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Preface

These lectures are based on a book | recently wrote with IS&akos, published by
Springer [52]. Their main purpose is to present, in an intaidry and pedagogical
way, a number of important recent developments in the dycswofi Hamiltonian
systems ofN degrees of freedom. This is a subject with a long and glorfosis
tory, which continues to be actively studied due to its mappliaations in a wide
variety of scientific fields, the most important of them beiolgssical mechanics,
astronomy, optics, electromagnetism, solid state phygicantum mechanics and
statistical mechanics.

Even in such diverse areas as biology, chemistry or engirggevhen the oscil-
lations of mutually interacting elements arise, a Hamiltarformulation can prove
especially useful, as long as dissipation phenomena cawoitdered negligible.
This situation occurs, for example, in weakly oscillatingehanical structures, low
resistance electrical circuits, energy transport praessmacromolecular models
of motor proteins or vibrating DNA double helical structsire

Let us briefly review some basic facts about Hamiltonian dyica, before pro-
ceeding to describe the contents of these lectures:

The fundamental property of Hamiltonian systems is thay tire derived from
Hamilton’s Principle of Least Action and are intimatelyateld to the conservation
of volume under time evolution in the phase space of theiitipopsand momentum
variablesgy, px, k= 1,2,...,N, defined in the Euclidean phase sp&2'. Their
associated system of (first order) differential equatidnsation is obtained from
a Hamiltonian functiomd, which depends on the phase space variables and perhaps
also time. IfH is explicitly time-independent, it represents a first imgd@f the
motion expressing the conservation of total energy of theiHanian system. The
dynamics of this system is completely described by the mwiat(trajectories or
orbits) of Hamilton’s equations, which lie on(@8N — 1)-dimensional manifold, the
so-called “energy surfaceH(qs,...,an, P1,---,Pn) = E.

This constant energy manifold can be compact or not. If ibis some orbits may
escape to infinity, thus providing a suitable framework toidging many problems
of interest to the dynamics of scattering phenomena. Irethetures, however, we
shall be exclusively concerned with the case where the anhehergy manifold is
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compact. In this situation, the well-known theorems of hiitle-Arnol'd (LA) and
Kolmogorov-Arnol'd-Moser (KAM) rigorously establish twismportant facts [20]:

The LA Theoremif N — 1 global, analytic, single-valued integrals exist (beside
the Hamiltonian) that are functionally independent andnvolution (the Poisson
bracket of any two of them vanishes), the system is caltaupletely integrable
as its equations can in principle be integrated by quadzatto a single integral
equation expressing the solution curves. Moreover, thesees generally lie on
N-dimensional toriand are either periodic or quasiperiodic functiondNahcom-
mensurate frequencies.

The KAM theoremtf H can be written in the forrdl = Hg + €H; of ane pertur-
bation of a completely integrable Hamiltonian systdgy most(in the sense of pos-
itive measure) quasiperiodic tori persist for sufficiersiiyall €. This establishes the
fact that many near-integrable Hamiltonian systems (lleesolar system for exam-
ple!) are “globally stable” in the sense that most of theluions around an isolated
stable-elliptic equilibrium point or periodic orbit areggular” or “predictable”.

And what about Hamiltonian systems which are far from irabtg? As has
been rigorously established and numerically amply docuetknhey possess near
their unstableequilibria and periodic orbits dense sets of solutions Whie called
chaotig as they are characterized by an extremely sensitive deperdon ini-
tial conditions known ashaos These chaotic solutions also exist in generic near-
integrable Hamiltonian systems down to arbitrarily smallxes ofe — 0 and form
a network of regions on the energy surface, whose size ggngraws with in-
creasinge|.

In the last four decades, since KAM theory and its implicasibecame widely
known, Hamiltonian systems have been studied exhaustesbecially in the cases
of N =2 andN = 3 degrees of freedom. A wide variety of powerful analytiaadia
numerical tools have been developed to: (i) verify whethgivan Hamiltonian sys-
tem is integrable (ii) examine whether a specific initialtstieads to a periodic,
quasiperiodic or chaotic orbit (iii) estimate the “size” ifgular domains of pre-
dominantly quasiperiodic motion and (iv) analyze mathécadly the “boundary”
of these regular domains, beyond which large scale chaggioms dominate the
dynamics and most solutions exhibit in the course of timéssieal properties that
prevail over their deterministic character.

As it often happens, however, physicists are more daring thathematicians.
Impatient with the slow progress of rigorous analysis aisgired by the pioneering
numerical experiments of Fermi, Pasta and Ulam (FPU) in 8&0%, a number
of statistical mechanics experts embarked on a wondertuhgy in the field of
N > 1 coupled nonlinear oscillator chains and lattices andodisied a goldmine.
Much to their surprise they discovered a wealth of extrerimghresting results and
opened up a path that is most vigorously pursued to this \eyyTthey concentrated
especially on one-dimensional FPU lattices (or chaing) ofassical particles and
sought to uncover their transport properties, especiallihe N — o andt —
limit.

They were joined in their efforts by a new generation of mathgcal physicists
aiming ultimately to establish the validity of Fourier'siaf heat conduction, un-
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ravel the mysteries of localized oscillations, understemetgy transport and explore
the statistical properties of these Hamiltonian systenfardtom equilibrium situ-
ations. They often set all parameters equal, but also sdyi@xamined the effect
of disorder and its connections with nonlinearity. Althbugost results obtained to
date concernd = 1)-dimensional chains, a number of findings have been egténd
to the case of highed(> 1)-dimensional lattices.

Throughout these studies, regular motion has been assdei@h quasiperiodic
orbits onN-dimensional tori and chaos has been connected to Lyapwpmnents,
the maximal of which is expected to converge to a finite pasitalue in the long-
time limitt — c. Recently, however, this “duality” has been challenged bymber
of results regarding long time Hamiltonian dynamics, whiebeal: (a) the role of
tori with dimension as low ad = 2,3, ... on the N — 1 energy surface and (b) the
significance of regimes of “weak chaos”, near the boundarieggular regions.
These phenomena lead to the emergence of a hierarchy ofusasicwhich form
what we callquasi-stationary stateand give rise to particularly long-lived regular
or chaotic phenomena that manifest a deeper level of contpleith far-reaching
physical consequences.

It is the purpose of these lectures to discuss these phersowitin the context
of what we call Complex Hamiltonian Dynamics. In what follywwe intend to
summarize many years of research and discuss a number ot reselts within
the framework of what is already known abdlidegrees of freedom Hamiltonian
systems. We intend to make the presentation self-contaimethtroductory enough
to be accessible to a wide range of scientists, young angvwlol possess some basic
knowledge of mathematical physics.

More specifically, we start by presenting in Chap. 1 some dumehtal back-
ground material on Hamiltonian systems that would help thiritiated reader build
some basic knowledge on what these lectures are all abopasf this introduc-
tion, we mention the pioneering results of A. Lyapunov andPHincaré regarding
local and global stability of the solutions of Hamiltonigrseems. We then consider
in Chap. 2 some illustrative examples of Hamiltonian systefiN = 1 and 2 de-
grees of freedom and discuss the concept of integrabilidytae departure from it
using singularity analysis inomplex timeand perturbation theory. In particular, the
occurrence of chaos in such systems as a result of intevasaf invariant mani-
folds of saddle points will be examined in some detail.

In Chap. 3, we present in an elementary way the mathematioabpts and basic
ingredients of equilibrium points, periodic orbits anditHecal stability analysis
for arbitraryN. We describe the method of Lyapunov exponents and examgire th
usefulness in estimating the Kolmogorov entropy of ceraigsically important
Hamiltonian systems in the thermodynamic limit, i.e. takthe total energ¥ and
the number of particleN very large withE /N = constant. Moreover, we introduce
some alternative methods for distinguishing order fromoshlaased on the more
recently developed approach of Generalized Alignmentclesl{GALIS).

Chap. 4 introduces the fundamental notionaaflinear normal mode@\NMs),
resonances and their implications for global stability @ftimn in Hamiltonian sys-
tems with a finite number of degrees of freedbinin particular, we examine the
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importance of discrete symmetries and the usefulness afpgitteory in analyzing
periodic and quasiperiodic motion in Hamiltonian systenith weriodic boundary
conditions. All this is applied in Chap. 5 to explain the phoa of FPU recurrences

and the associated transition from “weak” to “strong” chable introduce the no-
tion of energy localizatiorin normal mode space and discuss the existence and
stability of low-dimensional §-tori” aiming to provide a more complete interpreta-
tion of FPU recurrences and their connection to energy eqtiijpn in FPU models

of particle chains.

In Chap. 6 we proceed to discuss the phenomentotalized oscillationsn the
configuration space of nonlinear 1-dimensional latticeth Wi — oo, concentrating
first on the so-called periodic (or translationally invatjecase where all parameters
in the on site and interaction potentials are identical. \&e mention in this chapter
recent results regarding the effectsd#localizationand diffusion due talisorder
introduced by choosing some of the parameters (massesing smstants) ran-
domly at the initialization of the system.

Next, in Chap. 7 we examine the statistical properties obtihaegions in cases
where the orbits exhibit “weak chaos”, e.g. near the bourdanf islands of regu-
lar motion where the positive Lyapunov exponents are radbtismall. We demon-
strate that “stickiness” phenomena are particularly ingoutrin these regimes, while
probability density functions (pdfs) of sums of orbital gpoments (treated as ran-
dom variables in the sense of the Central Limit Theorem)waleapproximated by
functions that are far from Gaussian! In fact, these pdfsedjoresemble-Gaussian
distributions resulting from minimizing Tsalligj-entropy (subject to certain con-
straints) rather than the classical Boltzmann Gibbs (BGlopy and are related
to what has been called Nonextensive Statistical Mechafisgrongly correlated
dynamical processes.

The lectures end with Chap. 8 containing our conclusiorist aflopen research
problems and a discussion of future prospects in a numbeeasaf Hamiltonian
dynamics. Moreover, at the end of every chapter | have irdwdnumber of exer-
cises and problems aimed at training the uninitiated readearn how to use some
of the fundamental concepts and techniques described here.

Tassos Bountis
Patras, Greece
June 2012
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Chapter 1
Introduction

Abstract Chap. 1 starts by defining a dynamical system in terms of arglidif-
ferential equations and presents the fundamental frankewithin which one can
study the stability of their equilibrium (or fixed) pointss developed by the great
Russian mathematician A. M. Lyapunov. The concept of LyapuB@haracteris-
tic Exponents is introduced and two theorems by Lyapunow@eussed, which
establish criteria for the asymptotic stability of a fixedingo The mathematical
setting of a Hamiltonian system is presented and a thirdrémdoy Lyapunov is
stated concerning the continuation of the linear normalesaxfN harmonic oscil-
lators, when the system is perturbed by adding to the Hanidtononlinear terms
higher than quadratic. Finally, we discuss the meanirgpaiplexityin Hamiltonian
dynamics, by referring to certain weakly chaotic orbits,iahhform complicated
quasi-stationary states that are well-approximated bptimeiples of nonextensive
statistical mechanics for very long times.

1.1 Preamble

When we speak of dynamics we are interested to know howsttteof an observ-
able changes in time. This may represent, for example, te#iqo or velocity of
a mass particle in 3-dimensional space, the current flow ielectrical circuit, the
concentration of a chemical substance, or the populatica lblogical species.
When we refer to a collection of individual components, wallsspeak of the dy-
namics of asystemMost frequently, these components will interact with eatter
and act interdependently. And this is when matters staret@gmplicated.

What is the nature of this interdependence and how doesedittatiie dynam-
ics? Does it always lead to behavior that we call “unpredtieta or chaotic(in the
sense of extremely sensitive dependence on initial camdiji or does it also give
rise to motions that we may refer to as “regular”, “ordered"mredictable™? And
what about the intermediate regime between order and chdwse complexity
frequently lies?
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It is clear that if we wish to address such questions, we mrsdtifitroduce a
proper mathematical framework for their study and this svjated by the field of
Ordinary Differential Equations (ODES). In this context will assume that our
system possessegeal dependent variablésy(t),k =1,2,...,n, which constitute
a statex(t) = (xq(t),...,xn(t)) in the phase spacef the systenD C R" and are
functions of the single independent variable of the probitrma timet € R. Their
dynamics is described by the system of first order ODEs

({TXk:fk(XlaXZa"-vxn)v k:1727"'7n7 (11)

which is thus called dynamical systen§ince thef, do not explicitly depend oh
the system is calledutonomousThe functionsfy are defined everywhere b and,
for simplicity, we shall assume that they are analytic irtladlir variables, meaning
that they can be expressed as convergent series expansitvesy (with non-zero
radius of convergence) near one of thegjuilibrium (or fixed) pointslocated at the
origin of phase spadg= (0,...,0) € D, where

f(0)=0, k=1,2,....n. (1.2)

This implies that the right sides of our Egs. (1.1) can be agpd in power series:

dxy
o PaXet PXet 4 P+ Pk(ml’ 'm“)xrlnlxg‘2 L (1.3)

wherek=1,2,...,nand them, > 0 are such thaty +my+...+m, > 1. Since the

fx are analytic, the existence and uniqueness of the solutiofisl), for any initial
conditionxy(0), ...,xn(0) (where thefy are defined) is guaranteed by the classical
theorems of Euler, Cauchy and Picard [47, 100]. Furtherntbeeseries in (1.3) are
convergent forxc| < A and by a well-known theorem of analysis (e.g. see [158,
p. 273]) its coefficients are bounded by:

R (1.4)

whereMy is an upper bound of the modulus of all terms of the fodfx;? ... X
entering in (1.3).

What can we say now about the solutions of these equationsiirali neighbor-
hood of the equilibrium point (1.2), where the series expmarssof thef, converge?
Is the motion “regular” or “predictable” there? This is theegtion ofstability of
motionfirst studied systematically by the great Russian mathematiA. M. Lya-
punov, more than 110 years ago [235]. In the section thatfalwe shall review his
famous method that led to the proof of the existencpefodic solutionsas con-
tinuations of the corresponding oscillations of the linezdal system of equations.

This method idocal in character, as it describes solutions in a very small regio
around the origin and for finite intervals in time. It gen&eas the treatment and
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results found in Poincaré’s thesis [276], of which Lyapulearned at a later time,
as he explains in the Introduction of [235].

1.2 Lyapunov stability of dynamical systems

Let us first define the notions of stability that Lyapunov hadnind: The first and
simplest one concerns what may be callsymptotic stabilityas it refers to the
case where all solutiong(t) of (1.3), starting within a domain of the origin given
by [xk(to)| < Ax, tend to 0 as — co. A less restrictive situation arises when we can
prove that for every & € < &, no matter how small, all solutions startingtat to
within a neighborhood of the origik(g) € B(¢), whereB(¢) is a “ball” of radius

€ around the origin, remain insid&¢) for all t > to.

This weaker condition is often callatkutral or conditional stabilityand will
be of great importance to us, as it frequently occursanservative dynamical sys-
tems(among which are the Hamiltonian ones). These conservesdpase volume
and hence cannot come to a complete rest at any valtdiofte or infinite. Con-
ditional stability, in fact, characterizes precisely tlystems for which Lyapunov
could prove the existence of families of periodic soluti@meund the origin by
relating them directly to a conserved quantity callategral of the motionFor
Lyapunov, the existence of integrals was a means to an efide #oincaré, who
consideredntegrability as a primary goal in trying to show tligobal stability of
the motion of a dynamical system.

Observe now that to be able discuss the question of stabflitre motion near
an equilibrium point of a dynamical system, we need to knomesthing about
the behavior of the solutions of the linearized equatiormualthat point. To this
end one might try to compare these solutions toegponential function of time
with the purpose of identifying the particular exponent tvauld enter in such a
relationship.

To achieve this, Lyapunov had the ingenious idea of introtywhat he called
the characteristic numbeof a scalar functio(t), as follows: First form the auxil-
iary functionz(t) = x(t)e* and define as the characteristic numbgnof x(t), that
value ofA for which z(t) vanishes fak < Ag and becomes unbounded for> A, as
t — o0. Thus, this number represents the “rate” of exponentiahygéar growth) of
x(t), as time becomes arbitrarily large. In fact, it is closelpcected to thaeegative
of what we call today theyapunov characteristic exponeftCE) [313]. Adopting
the convention that functiongt) whosez(t) vanishedor all A haveAg = « and
those for whichz(t) is unboundedor all A haveAg = —co, one can thus define a
unique characteristic number for every functigh).

Let us identify the meaning of characteristic numbers famoblem. Indeed, as
we can easily verify, they are directly related to the eigdmes of then x n matrix
J=(pj),j-k=1,2,...,n, obtained as the roots of the characteristic equation

detd — Aly) =0, (1.5)
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A1,A2,..., Ap, In being then x nidentity matrix. In modern terminology, therefore,
for a dynamical system (1.1), with an equilibrium poinf@0, . . . ,0) and a constant
Jacobian matrix

AT

Jk’j:pkj_a—xj(o,...,O)/j,k:1,2,...,n, (1.6)

the above analysis translates to the following well-knoesuit:

Theorem 1.1.(see [173, p. 181]) If all eigenvalues of the matrix J haveatsg
real part less than-c, ¢ > 0, there is a compact neighborhood U of the origin, such
that, for all (x1(0),x2(0),...,%(0)) € U, all solutions x(t) — 0, ast— . Further-
more, one can show that this approach to the fixed point is rexpital: Indeed, if
we denote by | the Euclidean norm iiR" and definex(t) = (X1 (t), X2(t), ..., %n(t)),

it can be proved, using simple topological arguments, thaafl x(0) € U, |x(t)| <
[x(0)|e~¢, and|x(t)|isin U for allt > 0.

Lyapunov then paid particular attention to the case wheee(onmore) of the
eigenvalues of the Jacobian matrix of the linearized eqoathavezero real part
This was the beginning of what we now chifurcation theory(see e.g. [168, 173]),
as it constitutes the turning point betwestability of the fixed point (all eigenvalues
have negative real part) antstability (at least one eigenvalue has positive real part).

The interested reader can find excellent accounts of thagyheot only in Lya-
punov’s treatise [235] but also in a number of excellentierks on the qualitative
theory of ODEs and dynamical systems [173, 268, 349]. Therédwever, one
more result of Lyapunov’s theory [235] concerning simpleigdic solutions of
Hamiltonian systemswvhich will be very useful to us and is described separately i
the next section.

1.3 Hamiltonian dynamical systems

In these lectures, we shall often speak of conditional (atnad) stability where
there is (at least) one pair of purely imaginary eigenva(aésthers being real and
negative), implying the possibility of the existence ofipdic orbits about the ori-
gin. This allows us to apply the above theory to the caddarhiltonian dynamical
system®f N degrees of freedoffdof), wheren = 2N and the equations of motion
(1.1) are written in the form

i —apk, T a5 k=1,2,...,N, a.7)

whereg(t), pk(t), k=1,2,...,2N are theposition and momentum coordinates
spectively andH is called theHamiltonian functionlf H does not explicitly depend
ont, it is easy to see from (1.7) that its total time derivativeéso and thus repre-
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sents a first integral (aronstant of the motignwhose value equals thetal energy
of the systenk.

In most cases treated here, we will assume that our Hanalharan be expanded
in power series as a sum of homogeneous polynorhiglef degreem > 2

H :Hz(ql,...,qN,pl,...,pN)—i—Hg(ql,...,qN,pl,...,pN)—l-...:E, (1.8)

so that the origimgy = px =0, k=1,2,...,N is an equilibrium point of the system.
H (ak(t), pk(t)) = E thus defines the so-called (constaemergy surfacel (E) C
RN, on which our Hamiltonian dynamics evolves.

Let us now assume that the linear equations resulting fro) éind (1.8), with
Hm =0 for allm> 2, yield a matrix, whose eigenvalues all occur in conjugaiag-
inary pairs£iwy and thus provide thgequencie®f the so-callechormal modeos-
cillations of the linearized system. This means that we ¢temge tonormal mode

coordinatesand write our Hamiltonian in the form &d uncouplecharmonic oscil-
lators

W Wy N
H®@ = 7(X12+y12)+7(x§+y§)+...+7(xﬁ+yﬁ) —E, (1.9
wherexy, Yk, k= 1,2,...,N are the new position and momentum coordinates and

wx represent the normal mode frequencies of the system.

Theorem 1.2.[235] If none of the ratios of these eigenvalues, «, is an integer,
forany jk=1,2,...,N, j £k, the linear normal modes continue to exist as periodic
solutions of the nonlinear system (1.7) when higher ordensets, Hg, . .. etc. are
taken into accountin (1.8).

These solutions have frequencies close to those of therimedes and are ex-
amples of what we callimple periodic orbit{SPOs), where all variables oscillate
with the same frequencs, = 271/ Ty, returning to the same values after a single
maximum (and minimum) in their time evolution over one pdrig.

What is the importance of these particular SPOs which atedzabnlinear nor-
mal modesor NNMs? Once we have established that they exist, what easay
about their stability under small perturbations of theitiah conditions? How do
their stability properties change as we vary the total en&dn (1.8)? Do such
changes only affect the motion in the immediate vicinityted NNMs or can they
also influence the dynamics of the system more globally? Aeeet other simple
periodic orbits of comparable importance that may also leéuliso study from this
point of view? These are the questions we shall try to answéne lectures that
follow.

After discussing in Chap. 2 the fundamental conceptsrdér and chaosin
Hamiltonian systems of few dof, we shall examine in Chap.ettpics oflocal
and global stabilityin the case of arbitrary (but finite) number of déf It is here
that we will introduce the spectrum of LCEs for Hamiltonigstems, following the
discussion of the previous section. In particular, we sthigitover that the conver-
gence of this spectrum is connected to to the emergersteooiglychaotic behavior
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in the solutions oorbits of the system. We also describe in that chapter the method
of the Generalized Alignment Indices GALk=1,2,..., 2N indicators, which are
ideal for identifying domains of chaos and ordeiNrdof Hamiltonian systems and
2N-dimensional (RID) symplectic maps.

Then in Chap. 4 we focus on the importance of NNMs in Hamitilorgystems
possessing discrete symmetries and discuss their rekewdtitregard to physical
models oscillating in one, two or three spatial dimensi@s: main example will
be the Fermi Pasta Ulam (FPU) chain under periodic boundarglitons, but the
results will be quite general and can apply to a wide variétyystems, which are
of interest to solid state physics.

In Chap. 5, we return to a very important physical propertyHaimiltonian
lattices, namely arrays afonlinear oscillatorscoupled to each other by nearest
neighbor interactions in one or more spatial dimensiongdrticular, we revisit
the famous FPU lattice and investigate the phenomen&®tf recurrencest low
energies, using Poincaré-Linstedt perturbation theoy the GALI method. We
show that these are connected witheakly chaotit regimes dominated bjow-
dimensional torj whose energy profile isxponentially localizedh Fourier space.
We then study, at higher energielffusionphenomena and the transitiondelo-
calizationandequipartitionof the total energy among thi¥ normal modes.

Then, in Chap. 6 we discuss different typeslafalizationand diffusion phe-
nomena in the configuration space of one-dimensional neatifattices (chains of
anharmonic oscillators). In particular, we start with theewhere all lattice param-
eters are equal and show how exponentially localized asicifis calleddiscrete
breathersarise. These SPOs, which are often linearly stable andge@/barrier to
energy transport, can in fact be constructed by methodsiimgpinvariant manifold
intersections that are described in Chap. 2. However, wiaeslational invariance is
broken by introducing randoufisorderin the parameters of the system, nonlinear-
ity has a delocalizing effect and very important diffusifeepomena are observed,
which persist for extremely long times.

In Chap. 7, we turn to the investigation of the typestdtisticsthat characterizes
the dynamics in “weakly chaotic” regimes, where slow diifusprocesses are ob-
served. Perhaps not surprisingly, we find that,@®ws, theprobability distribution
functions(pdfs) associated with sums of chaotic variables in theseailos donot
quickly tend to a Gaussian at equilibrium, as expected by &@stical mechan-
ics. Rather, they go through a sequencquidisi-stationary state®SS), which are
well-approximated by a family af-Gaussian functions and share some remarkable
properties in many examples of multi-dimensional Hamikonsystems. In these
examples, it appears that “weakly chaotic” dynamics is eaited with ‘stickines$
phenomena near the boundary of islands of regular motidadcadge of chads
where LCEs are very small and orbits get trapped for extrgfoab times. Finally,
Chap. 8 presents our conclusions, a list of open researdtgons and a number of
other promising directions not treated in this book, whichexpected to shed new
light on the fascinating and important subject of complexiinian dynamics.
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1.4 Complex Hamiltonian Dynamics

In attempting to understand the complexity of chaotic béram Hamiltonian sys-
tems, it is important to recall some basic facts about dgpiilim thermodynam-
ics in the framework of BG theory of statistical ensembldsede topics form the
backbone of the results discussed in Chap. 7, but it is icreuto briefly review
them here. As is well-known in BG statistics, if a system canalb any one of
i=12,...,W states with probability;, its entropy is given by the famous formula

W
Ss6 = —kzlpi Inpi, (1.10)

wherek is Boltzmann’s constant, provided, of course,

W
; pi=1 (1.11)

The BG entropy satisfies the propertyaafditivity, i.e. if A andB are twoindepen-
dentsystems, the probability to be in their uniond,%-*B = p{*p‘j3 and this necessi-
tates that the entropy of the joint state be additive, i.e.

S86(A+B) = Sse(A) + Ssa(B). (1.12)

At thermal equilibrium, the probabilities that optimizestBG entropy subject to
(1.112), given the energy spectrufnand temperatur€ of these states are:

e*EEi i BE
pi = , Zsg= ) € 77, (1.13)

ZpG i

wheref3 = 1/KT andZgg is the so-called BG partition function. For a continuum
set of states depending on one varialleéhe optimal pdf for BG statistics subject
to (1.11), zero mean and a given varialces, of course, the well-known Gaussian

p(x) = e/ /\/2V. Another important property of the BG entropy is that it is
extensivei.e.

|imN%% < w. (1.14)

This means that the BG entropy grolirsearly as a function of the number of dof
N of the system. But then, what about many physically imparsgetems that are
not extensive

As we discuss in Chap. 7, it is for these type of situationsdtdifferent form of
entropy has been proposed [335], the so-callgallis entropy

1—s%p O
§=k—=="L with Y pi=1 (1.15)
PR



8 1 Introduction

depending on an indeg, wherei = 1,...,W counts the states of the system oc-
curring with probabilityp; andk is the Boltzmann constant. Just as the Gaussian
distribution represents an extremal of the BG entropy (lfd0a continuum set of
statex € R, theg-Gaussian distribution

P(x) = ae(;ﬂX2 =a[l-(1-q)Bx?)] = , (1.16)

is obtained by optimizing the Tsallis entropy (1.15), wheiie the entropic index,
B is a free parameter arada normalization constant. Expression (1.16) is a gener-

alization of the Gaussian, since in the lirgit> 1 we have Iirraﬁlegﬁx2 —eP?

The Tsallis entropy is, in generahot additive since it can be shown that
S(A+B) = §(A) + &(B) + k(1 — q)S(A)S(B) and hence is alsnot extensive
It thus offers us the possibility of studying cases wheréedint subsystems like
A and B above are never completely uncorrelated, as is the casevithgmany
realistic physical systems where long range forces arehiadg335]. It appears,
therefore, that a framework formally analogous to BG thatymamics is needed
for nonextensive systems as well, where the exponentiglk. 18) are replaced by
g-exponentials, as defined in (1.16).

Complexity is, of course, difficult to describe by a singldini¢gion. Broadly
speaking, it characterizes systems of nonlinearly inteargcomponents that can
exhibit collective phenomena like pattern formation,setjanization and the emer-
gence of states that are not observed at the level of any diédnal component.
Clearly, therefore, Hamiltonian systems are not comjplex se as there exists a
solid mathematical framework for their accurate desaipt\We do not need to in-
vent new and inspiring models that will capture the maindezg of the dynamics,
as we do in the flocking of birds, for example, or the spreachaf@demic.

In Hamiltonian dynamics we shall speak of complexity whew mpdenomena
arise, which are not expected by the classical theory of Nelah mechanics, or
statistical physics. Our claim is that such phenomena daoirpdor example, in
regimes where differerttierarchiesof chaotic behavior are detected, where phys-
ical processes like diffusion and energy transport criycidépend on the rate of
separation of nearby trajectories as a function of time nf/his separation grows
exponentially, it may do so in ways that are indistinguidbdtom a power-law due
to strong correlations present for very long times. In fa@ppears that this kind of
evolution is connected with the intricacies aj@metriccomplexity of phase space
dynamics caused by the presence of invariant Cantor settelbat the boundaries
of islands of regular motion around stable periodic sohgiof the system.

But this does not exhaust the sources of complexity in Ham#in dynamics.
As we will discover, besides varying degrees of chaos, thl@ exist hierarchies
of order inN dof Hamiltonian systems. Indeed, around discrete brested near
NNMs responsible for FPU recurrences at low energies, otea dihds that invari-
ant tori exist of dimensiomuch lowerthan the numbeN expected by classical
theorems. One way to approach this issue is to study thelistadfi tori, using
for example the GALI method, or group theoretical techngjirecases where the
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system possesses discrete symmetries. Much work, hovatilereeds to be done
before these questions are completely understood.






Chapter 2

Hamiltonian Systems of Few Degrees of
Freedom

Abstract In Chap. 2 we provide first an elementary introduction to saingple
examples of Hamiltonian systems of one and two degrees efém. \We describe
the essential features of phase space plots and focus oartbepts of periodic and
quasiperiodic motions. We then address the questionsagjriability and solvability
of the equations, first for linear and then for nonlinear feois. We present the
important integrability criteria of Painlevé analysisiomplex timend show, on the
non-integrable Hénon-Heiles model, how chaotic orbiiseann a Poincaré Surface
of Section of the dynamics in phase space. Using the exanieperiodically
driven Duffing oscillator, we explain that chaos is conndetéh the intersection of
invariant manifolds and describe how these intersectiande analytically studied
by the perturbation approach of Mel’'nikov theory.

2.1 The case oN = 1 degree of freedom

One of the first physical systems that an undergraduaterstedeounters in his (or
her) science studies is the harmonic oscillator . This dessithe oscillations of a
massm, tied to a spring, which exerts on the mass a force that isqutigmal to the
negative of the displacemeqbf the mass from its equilibrium positioq & 0), as
shown in Fig. 2.1. The dynamics is described by Newton’sseécwvder differential
equation ,

m% = —kaq, (2.1)
wherek > 0 is a constant representing the hardness (or softness) spting. Equa-
tion (2.1) can be easily solved by standard techniques e&ti©®DEs to yield the
displacemeng|(t) as an oscillatory function of time of the form

q(t) =Asin(wt+a), w=+/k/m, (2.2)

11
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whereA anda are free constants corresponding to the amplitude and fase
cillations andw is the frequency.

Fig. 2.1 A harmonic oscil- . .
lator consists of a mas®s — q(t) —
moving horizontally on a : :

frictionless table under the i i

action of a force which is k
proportional to the negative _WW m
of the displacemen(t) of :

the mass from its equilibrium //// ///////////////////////////////77//////////////////

position atq=0 (k> 0is a =0
proportionality constant). q=

If we now recall from introductory physics that= mdq/dt represents the mo-
mentum of the mass, we can rewrite (2.1) in the form of two first order ODEs

@7p70H

dp JoH

d m Jdp’ dt ka= aq’ 23)
where we have already anticipated that the dynamics iset&fiom the Hamilto-
nian function

P
which is an integral of the motion (sincélddt = 0), whose valué& represents the
total (kinetic plus potential) energy of the system. Thhg thass-spring system is
our first example of a Hamiltonian systemMf= 1 dof.

We will not attempt to solve (2.3). Had we done so, of course would have
recovered (2.2). Instead, we will consider the solutiorthefproblengeometrically
as a one-parameter family of trajectories (or orbits) gikkgn(2.3) and plotted in
the (g, p) phase space of the system in Fig. 2.2. Thus, as this figuresstmth
variablegj(t) andp(t) oscillate periodically with the same frequerwyTheir orbits
are ellipses whose (semi-) major and minor axes are detedhiy the parameters
k, mand the value oE.

q2

Fig. 2.2 Plot of the solutions p
of the harmonic oscillator
Hamiltonian (2.4) in the

(g, p) phase space, as a one-
parameter family of curves,
for different values of the total //’f’t :(N\
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Note now that the energy integral (2.4) can also be used tghrs one step
closer to the complete solution of the problem, by solving)2or p and obtaining
an equation where the varialijés separated from the tintelntegrating both sides
of this equation in terms of the respective variables, wiveat the expression

b s
0 \/2E/m— w?q?
which defines implicitly the solution(t) as function oft, c being the second free

constant of the problem (the first onel$. The reader now recognizes the left side
of (2.5) as the inverse sine function, whence we finally obtai

=t+c, (2.5)

2E .
qt) = \/Tsm(w(H—c)), (2.6)
where the constants andc can be related té anda, by direct comparison with

(2.2).

The process described above is call@egration by quadratureand was made
possible by the crucial existence of the integral of motd4).

Of course, the harmonic oscillator is a linear system whgseuhics is very sim-
ple. It possesses a singeguilibrium or fixed pointt (0,0), where all first deriva-
tives in (2.3) vanish. This point is callegliptic and all closed curves about it in
Fig. 2.2 describe oscillations whose frequengys independent of the choice of
initial conditions.

Let us turn, therefore, to a more interesting one dof Hamiéto system repre-
senting the motion of a simple pendulum shown in Fig. 2.3edfsation of motion
according to classical mechanics is

|20'2—6

a2
where the right side of (2.7) expresses the restoring todgeeo the weighing of
the massd being the acceleration due to gravity) and the left sideriless the time
derivative of the angular momentum of the mass. If we nowenthits equation as a
system of two first order ODESs, as we did for the harmonic tzoil, we find again
that they can be cast in Hamiltonian form

m = —mlgsing, (2.7)

dq JH dp g . oH

dt_p_ T Ismq_ a9’ (2.8)
whereq = 0 andl is the length of the pendulum. Of course, we cannot solveethes
equations as easily as we did for the harmonic oscillatalt, & you will find

out by solving Exercise 2.1, the solution of (2.8) can be ioletd via the so-called
Jacobi elliptic functions [110, 172, 6] , which have beenrthmhly studied in the
literature and are directly related to the solution of anaantonic oscillator with
cubic nonlinearity, about which we will have a lot to say itelasections.
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Fig. 2.3 The simple pendu-
lum is moving in the two-
dimensional planéx, z), but
its motion is completely de-
scribed by the anglé and its
derivative @ /dt.

zi mg

Still, we can make great progress in understanding the digsaof the simple
pendulum through its Hamiltonian function, which provides energy integral

2
H(q,p) = %Jrlg(l—cosq):E. (2.9)

Plotting this family of curves in théqg, p) phase space for different valuestbfve
now obtain a much more interesting picture than Fig. 2.2aegiin Fig. 2.4. Ob-
serve that, besides the elliptic fixed point at the origieréhare two new equilibria
located at the point&trt,0). These are calledaddle pointsindrepel most orbits
in their neighborhood along hyperbola-looking trajeasriFor this reason points A
and B in Fig. 2.4 are also callethstable in contrast to th€0, 0) fixed point, which
is calledstable More precisely, in view of the theory presented in Chag010) is
characterized by what we called conditional (or neutrapity.

Fig. 2.4 Plot of the curves of p

the energy integral (2.9) in

the (g, p) phase space. Note, /
the presence of additional

equilibrium points a{+1,0),

which are of the saddle type. \B S ﬁ
Observe also the cun®

separating oscillatory motion -7

(L) about the central elliptic

point at(0,0) from rotational
motion (R).

Let us now discuss thinear stability of fixed points of a Hamiltonian system
within the more general framework outlined in Sect. 1.2.dding to this analysis,
we first need to linearize Hamilton’s system of ODEs (1.7)wuibm fixed point,
which we assume to be located at the ori@is= (0,0,...,0) of the 2ND phase
space. The resulting set of linear ODEs is written in termthefJacobian matrix

J= {ij}l

4

)
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2N

Xj = Z ijXk, j = 1,2,...,2N, (2.10)
K=1
whose elements (show this as a simple exercise starting Wifly)
ji=1,2,...,N: Ji _ o 0), k=1,....N
) yc . Jk apjaqk ) )t )
9°H
Jik==5—>—(0), k=N-+1,...,2N,
ik apjﬁpka( )
. 0°H
=N+1,....2N: Jy=————-(0), k=1,...,N,
: a aQJfNaQK( )
9°H
Jk=—5—"—=—"(0), k=N+1,...,2N, 2.11
a aneNapka( ) (2.11)

wherex; represents small variations away from the origjp=€ p; =0, j=1,...,N)
of theq; variables forj = 1,...,N and thep; variables forj = N+1,...,2N.

For Hamiltonian systems dfl = 1 dof, it is clear from (2.11) that the elements
of the 2x 2 Jacobian matrid = {Jj}, j.k=1,2are

2 2 2H

0“H 0
m(oao), Ji2=5-5(0,0), Jo1 = ——5-(0,0). (2.12)

Jii=—-Jo= a2 I

In the case of the harmonic oscillator (2.3) this matrix has imaginary eigen-
valuesA; = iw and A, = —iw, and hence corresponds to the case of conditional
(neutral) stability defined in section 1.2. As a local prapeit characterizes the
fixed point at the origin of Fig. 2.2 as elliptic. However, @inthe original prob-
lem is linear, this type of stability is alsglobal and implies that the solutions are
oscillatory not only near the origin but in the full phasen®#éq, p).

In the case of the pendulum Hamiltonian, however, the sgoas very different.
First of all, there are more than one fixed points. In factreéhis an infinity of
them located at6,,0) = (+nm,0), N=0,1,2,..., where(q, p) = (0,0) in the(q, p)
phase space. The linearized equations of motion about tixesepoints are:

()= (332) (2)-
~(penso) () = (gCara) ()

Thus, forn = 2k even k any integer) the Jacobian matthhas two complex conju-
gate (imaginary) eigenvalu@ds = iayp, A2 = —iay and corresponds to elliptic fixed
points at(2krt, 0), while forn = 2k+ 1, the equilibria are of theaddle typavith real

eigenvalues\; = an, A2 = —ap, wherean = /g/I (see points A, B in Fig. 2.4).
Near these saddle points, the motion is governed by the taleergenvectors cor-
responding to the above two eigenvalues. Along the eigeoveorresponding to

(2.13)
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A1 > 0, solutions of (2.13) move exponentially away from the fiyexdnt, while
along theA; < 0 eigenvector they exponentially converge to the fixed point

The important observation here is that, in the case of thelsipendulum, the
solutions of the linearized equations of motion (2.13) al&honlylocally within an
infinitesimally small neighborhood of the fixed points. Tleason for this is that the
full equations of the system (2.8) are nonlinear and heretis no guarantee that
the linear dynamics near the fixed pointsapologically equivalento the solutions
of the system when the nonlinear terms are included.

By topological equivalence, we refer here to the existeri@elmmeomorphism
(i.e. a continuous and invertible map, with a continuougise) that maps orbits of
(2.13) in a one-to-one way to orbits of (2.8), see [173, 268®]3How do we know
that? How can we be sure that if we expand the right hand sfd@s3) in powers of
g, p, using e.g. sig=q—q3/6+ ... as we did in Sect. 1.2, we will obtain solutions
which are topologically equivalent to those of the lineadzquations (2.13)?

The answer to this question is provided by the Hartman-Gesbtiheorem
[173, 268, 349, 260, 178], which states that such an equigalean be established
provided all eigenvalues of the Jacobian matrix have redldiierent from zero.
Now, as we learned from Lyapunov’s theory, if all eigenvalsatisfy RéA;) < 0,
the equilibrium is asymptotically stable. However, if thés at least one eigenvalue
whose real part is positive, the general solutions of thdinear system deviate
exponentially away from the fixed point.

Well, this settles the issue about the saddle poinf§2ikt+ 1), 0) of the simple
pendulum. It does not help us, however, with the elliptiay®at(2krt, 0), since the
linearized equations about them havé Rg=0,i = 1,2 and the Hartman-Grobman
theorem does not apply. Here is where the integral of theanapresented by
the Hamiltonian function (2.9) comes to the rescue. It dstabs the existence of
a family of closed curves globally, i.e. within a large regiaround these elliptic
points.

In our problem, this region extends all the way to feparatrixcurveS joining
theunstable manifol@f saddle point A to thetable manifoldf saddle point B (and
the unstable manifold of B with the stable one of A), as showrig. 2.4. These
manifolds are analytic curves which are tangent to the spoeding eigenvectors
of the linearized equations and are calledariant, since all solutions starting on
such a manifold remain on it for all> 0 (ort < 0).

Invariant manifolds, however, do not need to join smoothljorm separatrices,
as in Fig. 2.4. In fact, as we explain in the next sectionsariant manifolds of
Hamiltonian systems olN > 2 dof generically intersect each other transversally
(i.e. with non-zero angle) and give rise to chaotic regianthe 2D phase space
RN If, on the other hand, these manifolds do join smoothly thiggests that the
system hadl analytic, single-valued integrals and is hence compleategrable in
the sense of the LA theorem, as in the case of the simple pe@mdul
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2.2 The case o = 2 degrees of freedom

Following the above discussion, it would be natural to edtear study to Hamil-
tonian systems of two dof, joining at first two harmonic dstirs, as shown in
Fig. 2.5 and applying the approach of Sect. 2.1. We furtheenassume that our
oscillators have equal masses = nm, = m and spring constantg = k, = k and
impose fixed boundary conditions to their endpoints, as showrig. 2.5.

k

k k

Fig. 2.5 Two coupled harmonic oscillators of equal massind force constark, with displace-
mentsay (t), g2(t) from their equilibrium position, moving horizontally on Adtionless table with
their endpoints firmly attached to two immovable walls.

Clearly, Newton’s equations of motion give in this case:

d? do?
mdt—qzl = —kap — k(a1 — a2), mdt_qzz
whereq;(t) are the particles’ displacements from their equilibriursifions atg; =
0,i =1,2. If we also introduce the momenta(t) of the two particles in terms
of their velocities, as we did for the single harmonic ostdl, we arrive at the
following fourth order system of ODEs

= —kap+ k(g1 —02), (2.14)

dop  p1 dps dgz  p2 dp.
& m E—k%—k(%—%)a & m E—k%"‘k(%—%)v (2.15)

which is definitely Hamiltonian, since it is derived from tHamiltonian function

AL L I C e
H(ql,pl,qz,pz)—2m+2m+k2+k2+k > =E (2.16)
(see (1.7)), expressing the integral of total endegNote that we may think of the
two endpoints of the system as represented by positions antemtagy, pp andqa,

ps that vanish identically for al.

What can we say about the solutions of this system? What wajigben, for
example, if asecond integrabf the motion were available? Could the method of
quadratures lead us to the solution in that case? Is it peih@gsible to use a suitable
coordinate transformation to separate them and write ouatgans as a system of
two uncoupled harmonic oscillators?

It is not very difficult to answer this question. Indeed, if perform the change
of variables
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01+ 02 01— 02 P14+ P2 P1— P2
P = , P= 2.17
V2 V2t T2 2 @17

(the factor ¥+/2 will be explained later), we see that, adding and subtrgdbly
sides the two equations in (2.14) (dividing alsorbynd introducingo = +/k/m),
splits the problem to two harmonic oscillators

Q=

, Q2=

dQ R dR

d  m dt
which havedifferentfrequenciesuo, ap. Observe that the new Hamiltonian of the
system becomes

—wfQi, i=1,2, w=w, w=13w, (2.18)

e
2

Q_

+ 32 (2.19)

K P P PP
(Q1,P1,Q2,P) = 5m T 2 +k
We now see that the factoy/4/2 was introduced in (2.17) to make the new equa-
tions of motion (2.18) have the sansanonical formas two uncoupled harmonic
oscillators, while the new Hamiltoniaf is expressed as the sum of the Hamiltoni-
ans of these oscillators. In this way, we may say that chanfgom g;, p; to Q;, P
variables we have performed a canonical coordinate tramsfiton to our system.

In this framework, we immediately realize that our probleasgesses not one
buttwo integrals of the motion which may be thought of as the energi¢he two
oscillators

QZ

I:I(Q17P15Q27P2)) o +k|

with k; = k, ko = 3k, while E; are two free parameters of the system to be fixed by
the initial conditionsy; (0), pi(0), i = 1,2. Thus, we may now proceed to apply the
method of quadratures to each of these oscillators, asideddn Sect. 2.1 to obtain
the general solution of the system in the form

—E, i=12 (2.20)

Q(t) = ,/%sin(m(wq)), i=1,2, (2.21)

¢i being the other two free parameters needed for the complketion of the 4 first
order ODEs (2.18). Naturally, if we wish to write our genesalution in terms of
the original variables of the problem, we only need to inegations (2.17) to find
qi(t), g2(t). We also remark that the above considerations show thattlyefiged
point of the system lies at the origin of phase space andigiel{why?)

Let us make a crucial observation at this point: The abovéyaisashows that,
for a system of 2 dof, 2 integrals are necessary and suffifierts integration by
quadratures, as the remaining two arbitrary constants merely represent phases
of oscillation and are not as importantisandE,. To understand this better, note
thatcy, ¢ arenot single-valued and hence do not belong to the class of integra
required by the LA theorem for complete integrability.

All this suggests that it would be advisable to introduce imoee transformation
to the so-calle@ction-anglevariabled;, 8, i = 1,2 as follows
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2wl . :
Q= %sm@l, R =+v2mwlicost, i=12 (2.22)
and write our integrals (2.20) & = ljw so that the new Hamiltonian (2.19) may
be expressed in a form

G(l1,01,12,62) = G(I1,12) = lian + 2wy (2.23)

that isindependentf the angles, which also demonstrates the irrelevance of the
phases of the oscillations in (2.21). Evidently, our aciémgle variables also satisfy
Hamilton’s equations of motion

d6  9G di G

which imply that the new momentaare constants of the motion, while tBeare
immediately integrated to giv@ = wt + 6, where6g are the two initial phases.
Thus, the change to action-angle variables defines a caldransformation and
the oscillations (2.22) are calldidear normal modesf the system.

Let us now discuss the solutions of this coupled system @faliroscillators.
Using (2.17) and (2.21) we see that they are expressed, gralens linear combi-
nations of two trigonometric oscillations with frequersie; = vk, w, = v/3k. If
these frequencies werationally dependent.e. if their ratio were a rational number
w1/ wy = my/my (Mg, mp being positive integers with no common divisor) all orbits
would closeon 2-dimensionahvariant tori, like the one shown in Fig. 2.6 and the
motion would be periodic (what are tihg , m, of the orbit shown in Fig. 2.6?). Note
that in our example, this could only happen for initial cdiatis such thakE; or E;
is zero, whence the solutions would execute in-phase obBphkase oscillations
with frequencywy,, or w; respectively.

In the general case, thoudt, andE, are both non-zero and the oscillations are
quasiperiodi¢ in the sense that they result from the superposition obtrignet-
ric terms whose frequencies amtionally independentas the ratiow,/w; = /3
is an irrational number. Hence, the orbits produced by tsedetions in the 4-
dimensional phase space arever closedperiodic). Unlike the orbit shown in
Fig. 2.6, they never pass by the same point, covering evigntaformly the 2-
dimensional torus of Fig. 2.6 specified by the valueEp&ndE,.

Let us now turn to the case of a system of two coupledlinearoscillators. In
particular, we shall discuss here one of the most famous anian 2 dof systems,
originally due to Hénon and Heiles [167]

H= %(pﬂ p%>+%(wfq%+ wSQ%Hq%qz—%q%- (2.25)
This describes the motion of a star of massn the axisymmetric potential of a
galaxy whose lowest order (quadratic) terms are those olutvemupled harmonic
oscillators and the only higher order terms present arecdattheq, g» variables

(for a most informative recent review on the applicationa@flinear dynamics and
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Fig. 2.6 If the ratio of the
frequencies of a 2 dof inte-
grable Hamiltonian system
is arational number, the or-
bits are periodic (and hence
close upon themselves) on
2-dimensional invariant tori,
such as the one shown in
the figure. However, if the
ratio wy /wy is irrational,

the orbits never close and
eventually cover uniformly
2-dimensional tori in the 4-
dimensional phase space of
the coordinates, pj, i = 1,2.

chaos to galaxy models see [102]). Note that the valua of (2.25) can be easily
scaled to unity by appropriately rescaling time, while adiadnal parameter before
theqfqz term in (2.25) has already been removed by a similar changeadé of all
variablesy;, p.

Thus, introducing the more convenient varialiles- x, g2 =y, p1 = Px, P2 = Py,
we can rewrite the above Hamiltonian in the form

H= %(p§+ p2)+V(xy) = %(p§+ p§)+%(Ax2+By2)+x2y— %y3 —E, (2.26)

whereE is the total energy and we have sef = A> 0 andws =B > 0. It is
instructive to write down Newton'’s equations of motion asated with this system

d?x oV dy oV )

F__R__AX_ZX)/’ W__a_y__By_X +Cy. (2.27)
Before going further, let us first write down here all possifiked points of the
system, which are easily found by setting the right handssidg2.27) equal to
Zero:

/OBALCAZ
0) ) =0.0) (i) ()= 04/2) Gil) ey = (Y ZPATEE 4
(2.28)

(the momentum coordinates corresponding to all these pain&t, of course, zero).
The local (or linear) stability of these equilibria will bésdussed later, with refer-
ence to some very important special cases of the Henore#igibblem. However,
there is one of them whose character can be immediately ddduam the above
equations: It is, of course, the origin (i), where all noekn terms in (2.27) do not
contribute to the analysis. Thus, infinitesimally closettis point, the equations be-
come identical to those of two uncoupled harmonic oscitlédmceA > 0, B > 0)
and therefore the equilibrium at the origingliptic.

Let us remark that (2.26) represents a first integral of th&esn. If we could
also find a second one, as in the problem of the two harmonittatscs, with all
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the nice mathematical properties required by the LA theotém problem would
be completely integrable and we would be able to integrateetjuations (2.27) by
quadratures and obtain the general solution.

This, however, is a very rare occurrence. In most cases that been numeri-
cally solved to date by many authors, even close to the équith point (i), one
finds, besides periodic and quasiperiodic orbits, a new &frmblution that appears
“irregular”, “unpredictable”, one may even say randomKimg [229]! These are
the orbits called chaotic. They tend to occupy densely 3edsional regions in the
4-dimensional phase space and depend very sensitivelyit@i gonditions, in the
sense that starting at almost any other point in their imatediicinity produces an-
other trajectory (also chaotic), which deviates exporadigtirom the original (ref-
erence) orbit as time increases.

Still, if one works only numerically, it is possible to miskawotic orbits alto-
gether, since their associated regions can be very thin aydnot even appear in
the computations. To speak about complete integrabiliyetfore (or the absence
thereof) one must have some analytical theory to suppootaigsly one’s state-
ments. One such theory is provided by the so-cdiaitle\e analysiswhich inves-
tigates a very fundamental property of the solutions rdl&eheirsingularities in
complex timg282, 155, 101].

The main result here is that if a system of ODEs has the sedfadlinle\e prop-
erty, i.e. its solutions havenly polesasmovablesingularities, it is expected to be
completely integrable, even explicitly solvable in ternfsknown functions. The
term “movable” implies that the location of a singularityis one of the free con-
stants to be specified by the initial conditions of the problé serves to differen-
tiate movable singularities from the so-calfedones, which appear explicitly in
the equations of motion [172, 110].

In the context of this analysis, one finds that the only knoases in which you
can in principle integrate the Hénon-Heiles equationsetely are the following:

Case 1:A=B, C=-1,
Case 2:A,B free C= -6,
Case 3:B=16A, C=—16. (2.29)

Of course, identifying integrable cases by the Painlev@yais only tells us
where to look folN dof Hamiltonian systems whose solutions are globally eder
and predictable. It does not tell us how to find Mantegrals that must exist (accord-
ing to the LA theorem) and which are necessary to solve thatems of motion by
quadratures. So, do we really need to bother with exampledagrable systems?

After all, they are so rare, that they can hardly be expectedine up in realistic
physical situations. To be fair about them, however, it ipamant to note that inte-
grable systems are especially useful for two importantmesiirst, they frequently
arise as close approximations of many physically realjstiblems (the solar sys-
tem being the most famous example) and second, their basandgal features do
not change very much under small perturbations, as the KAM #rad20] assures
us and as we know by now from an abundance of examples.
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Let’s take for instance the best-studied case of the Héfaites system, which
is both physically interesting and (most likely) non-imagle, A=B=1,C=1
[167, 229]

1 1 1
H=3(p+m)+50¢+y) +Xy -3y =E. (2.30)

Let us select a value of the total energy small enough, withéninterval 0< E <
1/6, for which it is known that all solutions of (2.30) are boedd To visualize
these solutions, let us plot in Fig. 2.7 the intersectionthefcorresponding orbits
with the plane(y, py) every timet = t, k= 1,2,... at whichx(tx) = 0, px(tx) > 0.
This is what we call @oincaé surface of sectio(PSS) for which we shall have a
lot more to say in the remainder of this chapter.

Do you see any chaos in panel (a) of this figure, wtere 1/24? No. Yet, itis
therg between the invariant curves that correspond to intamsexodf 2-dimensional
tori of quasiperiodic orbits, in the form of thin chaotic &g that are too small to
be visible. To see these chaotic solutions, one would hawdther increase the
resolution of Fig. 2.7(a) or raise the energy. Let us do ttierleObserve in this way,
in Figs. 2.7(b), (c), that we would have to reach energy \whshigh a& =1/8
before we begin to see widespread chaotic regions on theNR&& also that these
regions grow rapidly ag& approaches the escape eneEy- 1/6, where chaos
seems to spread over the full domain of allowed motion, wiglgular orbits are
restricted within small “islands” of quasiperiodic motititat seem to vanish as the
energy increases.

2.3 Non-autonomous one degree of freedom Hamiltonian systes

Perhaps the simplest non-integrable Hamiltonian systeswistence is a single pe-
riodically driven anharmonic oscillator, studied by Geéngffing [119], a German

engineer who worked on nonlinear vibrations. This osa@las described by what
is called nowadays Duffing’s equation of motion [163, 34%8]20

G(t) + wlq(t) + ag?(t) + Bai(t) + ysinQt =0, (2.31)

where we denote from now on time differentiation by a “dotéothe differentiated
variable. In (2.31)Q(t) again represents the displacement of this one-dimensional
oscillator from its zero position. Furthermore, we can asoote its momentum by

p = g and write the above equation as a driven one dof Hamiltonjatem of the
form

_oH
p_ apv

oH

p=—whq—aq’ —Bg’— ysinQt = ST (2.32)

where the Hamiltonian function

1 a .
H=H(aq,pt)= E(p2+w§q2)+§q3+§q“+ yqsinQt, (2.33)
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Fig. 2.7 Orbit intersections with the PS§, py) of the solutions of the Hénon-Heiles system with
Hamiltonian (2.30), at timek, k= 1,2, ..., wherex(tx) = 0, px(tk) > 0 and for fixed values of
the energyE. Note in panels (a) and (b), whee= 1/24 andE = 1/12 respectively, no chaotic
orbits are visible and a second integral of motion beside&0f2appears to exist. When we raise
the energy however & = 1/8 in (c), this is clearly seen to be an illusion. Ordered (jeasiperi-
odic) motion is restricted within islands surrounded byahavhose size diminishes rapidly as the
energy increases further. Thus, in (d) whErattains the valu& = 1/6 above which orbits escape
to infinity, the domain of chaotic motion extends over mosthef available energy surface.

for y # 0 depends explicitly ob. Thus,H is no longer an integral of the motion.
Indeed, wheny £ 0 things quickly start to get complicated. First of all=
p = 0 is no longer an equilibrium position since the sinusoidatrt in (2.31) will
immediately drive the oscillator away from that positiomfact,no equilibria exist
at all, since itis clearly not possible to fimahy pointsqg, po that remain fixed when
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we setq = p = 0 in these equations. More importantly, of course, the pkpaee

of the system isot 2-dimensional. Observe that it is no longer sufficient tocéfpe

a point(q(to), p(to)) in the (g, p) plane and expect to get a unique solution lying
in that plane. You also need to specify exactly what tigwgou are talking about,
since the dynamics is no longer invariant under time trdiaslaas in the cases of
the autonomous Hamiltonian systems considered so far.

The motion, therefore, evolves in the 3-dimensional spaget and (2.33) is
sometimes referred to as a systenook and a halfdof. In fact it is no different
than a 2 dof Hamiltonian system, since, in the terminologysett. 2.1, we can
represent the nonlinear oscillator in (2.31) by one actagte pair1, 6; and think
of g, p as coupled to a second (linear) oscillator whose adtias fixed, while its
angle coordinate i§, = Qt. Mathematically speaking, we say that the phase space
is acylinder, R? x S', where every point in thég, p) plane is associated with an
angle on the unit circl&.

To understand how this periodic driving in (2.31) affects ttynamics we will
consider the periodic diving term as a small perturbatiothentwo special cases
B =0 anda = 0 separately.

2.3.1 The Duffing nonlinear oscillator

Letussef3 =0,a = —1,wp = 11in (2.32) and examine the solutions of the system
a=p. p=—0g+0°—ysinQt (2.34)

for0<y« 1.Wheny=0itis easy to see that there are two equilibriaqéd p=0,
(i) g=1, p=0. Linearizing the equations of motion about them, as desedrin
Sect. 2.1, we easily find that (i) is a (stable) elliptic paanid (i) is an (unstable)
saddle. On the other hand, the dynamics of this one dof systehe full phase
plane(q, p) is described by the family of curves = H(qg, p) = (1/2)(p?+ %) —
(1/3)q® = E parameterized by the value of the enefgyas shown in Fig. 2.8(a).

Observe that, as in the case of the simple pendulum, hereaalsgion of os-
cillations exists around the origin, which extends all theywo the saddle gtl,0)
and is separated from the outside part of the phase planedwhesolutions escape
to infinity) by an invariant curvé& called the separatrix. The only difference is that
in the pendulum problers joins two different saddles and represents a so-called
heteroclinicsolution of the equations, while in the quadratic oscillatb (2.34),
Sjoins (1,0) to itself and is callechomoclinicsolution (these terms come from
the Greek words “cline” meaning “bed” and “hetero” and “hdmdnich mean, of
course, “different” and “same” respectively). These iaat curves, and the homo-
clinic (or heteroclinic) orbits that lie on them, constéypterhaps the single most
important object of study in nonlinear Hamiltonian dynasiic

Let us try to understand why: As Poincaré first pointed outemy # 0, the
elliptic point at(0,0) and the saddle point &t,0) in Fig. 2.8(a) shift to slightly
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P (b)

&)

Fig. 2.8 (a) The(q, p) phase plane of the quadratic oscillator (2.34) in ghe 0 case. Note the
elliptic point at the origin and the saddle point(4t0). The separatriX§ here is a single invariant
curve described by a homoclinic orbit joining the unstabid atable manifolds of the saddle at
(1,0). (b) Wheny # 0, however, these manifolds no longer join smoothly butrgget each other
infinitely often on a PSSy, = (q(tk), p(tk)), tk = KT +1to, k= 1,2,..., whereT = 2m1/Q is the
period of the forcing term.

different locationd® andQ on the PSS
Sy ={a(t), P(t)), tk=KT +to, k==+1,42,...}, T=2m/Q (2.39)

(see Fig. 2.8(b)). These are no longer fixed points of theeudifitial equations,
but have become intersectionsf= 211/ Q)-periodic orbits of the system (2.34),
whose solutions evolve now in the 3-dimensional sgce S', as explained above
[229, 163].

In addition, the stable and unstable manifd&isandS_ of the pointQ intersect
transversally at a poinfdo, po) in Fig. 2.8(b), lying furthest away fror®. This
implies the simultaneous occurrence of a double infinity wfhspoints, denoted
by (ak, pk), k= £1,£2, ..., with (gx, px) — P ask — 400, which constitute in fact
two distincthomoclinic orbits, one withkk = 0,+2,...,4+2m,... and one withk =
+1,...,4+(2m+1),..., mbeing a positive integer.

The reason for this is that the time evolution of the systenthenPSS (2.35) is
more conveniently described by the Poincaré map [173, 248,

Ry : 2ty — 2y, to€(0,2m1/Q), (2.36)

defined by following the trajectories of the systems and itooing their intersec-
tions with 2,. P andQ are respectively an elliptic and a saddle fixed point of this
map, since they satisfy,(P) = P andR,(Q) = Q. Mostimportantly, the map (2.36)
is aa diffeomorphismi.e. it is continuous and at (least once) continuouslyediff
entiable with respect to the phase space variales|t is alsoinvertible, i.e. F’tgl
exists and is also a diffeomorphism. This means that it mimpsjard and back-
ward in time, neighborhoods of the PSS that exhibit diffegohacally equivalent
dynamics. Thus, an intersection point of the invariant ridds$ is mapped by,
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(or Ptgl) to the next (or previous) such intersection point, proditlee manifolds in
their neighborhoods have tisame orientation

This explains why, for example, as the homoclinic pairis mapped tX’, X”,
etc. (and its companio¥ is mapped tor’, Y”, etc.) in Fig. 2.9(a), a shaded lobe
is mapped to the next one closer to the saddle pQjriy successive applications
of the mapR,. This results in théransportof points which were once “inside” the
manifoldsS;, S_ to the region “outside”. On the other hand, as Fig. 2.9(a) als
shows, there are corresponding lobes which were origifiallyside” and are now
mapped “inside” the domain of the elliptic pointRtFurthermore, the Hamiltonian
nature of the problem implies, according to Liouville’sdinem [229, 268, 349], that
the system is conservative in the sense that it preserves gpace volume. This
implies that the areas of the lobes shown in Fig. 2.9 are @quesch other.

Fig. 2.9 (a) The successive action of (2.36) maps each shaded lobe difjure to the next one,
closer to the poin®, thus taking points from the region “inside” the invariarémifolds to the re-
gion “outside” and eventually to infinity. (b) Schematic fpike of the dynamics around the elliptic
fixed point of the Poincaré map (2.36), on the surface oieeck,, wheny # 0.

Meanwhile, in thenomoclinic tangl€ormed by the intersecting manifolds near
the saddle poin®@ there is a wealth of dynamical phenomena about which a lot is
known. Besides the homoclinic orbits, there is a countatflaity of unstable peri-
odic solutions, while there also exist invariant Cantoss&dr which it can be rig-
orously proved by the Smale horseshoe theory [163, 349, tR&8hny two nearby
points belonging to this set lead to orbits that separata #ach other exponentially
fast in phase space.

Of course, if instead of one saddle point our Poincaré mdpa (see next sub-
section) the intersecting manifolds would give ris&&teroclinicorbits, in the same
way as described above, with lobes of equal areas transg@ints from “inside”
the invariant manifolds “outside” and vice versa. Heteracltangles would thus
be formed, where invariant sets of chaotic orbits can belaityiproved to exist.
The important observation is that this does not happen ady saddle fixed points
of the Poincaré map (2.36). It also happens, at smalleescakar every unstable
m-periodic orbit of the system of peridgh = mT, m= 2, 3,.. ., intersecting the PSS
(2.35) atm points (see Fig. 2.9(b)).
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As we know from the KAM theorem, “most” (in the sense of pagtmeasure)
invariant curves around the origin of (2.34)at 0 are preserved for sufficiently
small y # 0. Furthermore, a very important theorem by Birkhoff [22@9Balso
assures us that the invariant curves of the 0 case corresponding to periodic
orbits break up into an even number of stable and unstelgeriodic orbits, which
appear on the surface of sectionadiptic andsaddle fixed pointsespectively of
themth power of the Poincaré mzfﬁg".

This is schematically shown in Fig. 2.9(b) and represemtséa a wonderful sign
of a complex phenomenon, as it rigorously demonstrateghiea¢ are chaotic re-
gions around saddle points present at all scales! Aroundy elkptic fixed point
of any powerof the Poincaré map (hence around every small island shawn i
Fig. 2.9(b)), there are smaller islands and around them sweller ones etc., with
saddles and tangles of heteroclinic chaos in between dowrfititesimally small
scales!

It is instructive to carry out the above analysis for the Dhgffoscillator (2.31)
with only cubic nonlinearity. Setting = 0, the equation of motion becomes

G(t) = —3q(t) — Ba(t) + ysinQt, (2.37)

where we have replaced the parameter before the linear te@ndo as to be able
to consider also the case< 0. Although the phenomena we encounter here are
qualitatively the same as in the example of the quadrati¢ibmbscillator, we will
have the chance to exploit the additional symmetry of theadyins under reflection
about the axig) = 0 (wheny = 0). This is relevant in many physical systems (like
vibrating structures fixed on a horizontal uniform floor),em motions to the right
or left are equally favorable. With (2.37), we also have thpartunity to discuss a
case that has many common features with the pendulum pratenexamine the
interesting dynamics of the so-called double-well potdritiat arises frequently in
many problems of physics.

Let us begin by considering the cade= —f3 = 1, where the above system is
written ing, p phase space coordinates as

4=p, p=-0+0+ysinQt. (2.38)

Evidently, in the unforced case= 0, this anharmonic oscillator possesses 3 fixed
points: (i) An elliptic one,P = (0,0) and two saddle points (i1 = (—1,0) and
(iii) Q2= (1,0). Furthermore, the solutions along the separatrices aemgivterms
of simple hyperbolic functions. We thus have the opporfutatapply to these solu-
tions the so-calletlel'nikov theory[163, 349], which allows one to study exactly
what happens to these heteroclinic orbits wief0. In Problem 2.2 we ask you to
carry out such a calculation, following the steps outlinetbt.

First of all, recall that the saddle points of our cubic datdr (just as in the
case of the quadratic oscillator) are unstable periodidd]f (2.38) with period
T = 211/ Q, which persist on the PSS (2.35) as saddle fixed points of direcBré
map (2.36). These points continue to possess stable arablmstanifolds, which
no longer join smoothly, as in the unforced case. Mel'nik@approach works within
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the framework of perturbation theory foy| < 1 and yields expressions for the het-
eroclinic solutions of the perturbed problem, both for ttebke as well as unstable
manifolds of these saddle fixed points, as series expanisignusvers ofy.

We thus obtairdifferentexpansions which are uniformly valid in time intervals
(—o0,1t1), for the unstable manifold of th@; point and(t,, ) for the stable manifold
of the pointQ,, wheret, > t;. Examining these solutions at timgse (t1,t2) where
both series are valid, Mel'nikov’s theory shoviss first order iny, that the points at
which the corresponding manifolds intersect corresporidéaoots of the function

M(to) = /::(flgz— f201) (X(t —to), t)dt, (2.39)

which is proportional to theistancebetween the two manifolds on the PSS (2.35),
as a function ofy (see Problem 2.2). To derive (2.39) we have written our égusit
of motion in the form

q= f1(a,p) +ygu(a, p,t), q= fa(q, p) +vg2(a, p,t), gi(a,p,t) =gi(q,p,t+T),
(2.40)

i =1,2, whileX(t —to) = (§(t —to), p(t — to)) represents the exact heteroclinic (or
homoclinic) solution of the unforcegd= 0 case.

This means that we can now study analytically what happeribese stable
and unstable manifolds as one turns on the perturbationeopéhiodic forcing in
the above systems. Indeed, based on our knowledge of thestation on these
manifolds fory = 0 we can verify, as Poincaré predicted, that the Melnikosgrel
(2.39) is anoscillatory function ofty with infinitely many rootsM(tg)) =0, i =
0,+1,4+2,.... These correspond to the intersection points of the matsfal which
the heteroclinic (or homoclinic) orbits of the perturbedteyn are located.

Let us see how all this works in the case of the cubic oscillé238). As the
reader can easily verify, for= 0, the separatrices (or heteroclinic solutions) of this
problem,S., are given by the hyperbolic functions

1 1
Kt —tg) = (G(t —to), Pp(t —to)) = =+ [ tanh( —=(t —to) | , —=secK(t —to) | .
(-10) = (@t~ t0), it —10)) = (anh( Tt~ t0) ) Tseci(t—1o))
(2.41)
If we use the above expressions to substitute in (2.39) weiohn integral

Mito) = / " B(t—to) sinQtdt — \ifz / " secRtsinQ(t+to)dt,  (2.42)

that is not elementary. Its evaluation requires that werekthe integration to a
strip in the complex-plane and use Cauchy'’s residue theorem (see Problem 2.2).
The result is a simple formula

nQ/2

W) S 2)

sinQty, (2.43)
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which, when multiplied by provides an estimate of tliistancebetween the stable
and unstable manifolds &t=ty (compare with the numerical results of Exercise
2.4). It also demonstrates that these manifolds intersmasvtersely infinitely often,
sinceM(tp) has infinitely many zeros due to the sine function in (2.43)),

In fact, Mel’nikov’s theory does not only apply to perturlwats of planar Hamil-
tonian systems. It can be extended to dynamical systemsbifeay dimension,
n > 2, which can be written in the form

x(t) =f(x(t)) + yg(x,t), g(x,t) =g(x,t+T), (2.44)

forx(t) = (xa(t),...,Xa(t)) andy a sufficiently small real parameter. In the particular
case where the unperturbed equations are derived from egraftle Hamiltonian
system, possessimgndependent integrals in involutid®, i = 1,2, ..., n, we obtain

a Mel'nikov vector functionM (tp, v) = (Mg, ..., Mp), whose components are given
by [93, 290, 291]

Mi(to,v) = LZ(DH()A((t,v)),g()A((t, v),t—tp))dt, (2.45)

where(,) denotes the inner product amds a (generallyp-dimensional parameter
entering in the homoclinic (or heteroclinic) soluti&t,v)). Now, however, mat-
ters are more complicated, as we no longer have the geomestuiglization of the
invariant manifolds that was available in the= 2 case and we refer the interested
reader to the literature for more details [349, 93, 290, 291]

Exercises

Exercise 2.1(a) Perform the variable transformatigs= sin(6/2) to the equation
of motion of the simple pendulum (2.7) and show that this O[@Edmes

X=— (w2+ %) X+ 20, (2.46)
wherew = /g/I. Using the theory of Jacobi elliptic functions [172, 110, fijove
that the solution of this ODE can be expressed as the Jadiplicetine function

X(t) =Csn(u(t —to), k), H3(1+K?) = w?+ % K2u? = w?C?, (2.47)
which corresponds to the initial conditiorép) = 0, X(tg) = uC, while the energy
equation gives @°C? = E. EliminatingC, u from these equations, obtain an ex-
pression relating the modulus of the elliptic sine function to the total ener@y
and show that in the limi — 0, k — 0, andx(t) becomes the usual trigonometric
sine function. Prove also that in the limit— 1 the solution on the separatrix of
Fig. 2.4 reduces to the hyperbolic tangent function.
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(b) Show that in the oscillatory domain the periddf the pendulum is given in
terms of the elliptic integral of the first kind

~TT/2
k)= [
0 \/1—K25in2q07

and use this result to evaluate the first 2—3 terms in an eiggan$ T in powers
of k2. Finally, use the Fourier representation of the elliptizesiunction in terms
of trigonometric sines to plot $0,k?) as a function of its argumentfor several
values of the modulus? (see [172, 110, 6]).

Exercise 2.2.Consider a system of two coupled harmonic oscillators oftyipe
considered in Sect. 2.2, Fig. 2.5. Clal: k; the constant of the springs by which the
two masses are tied to the walls ang ky the constant of the spring that connects
them to each other. Find valukg k, such that the general solution of the system is
periodic and determine the period in every case.

(2.48)

Exercise 2.3.Show that the unforced quadratic and cubic Duffing oscitta(@.34),
(2.38) (ford = +1) possess the Painleve property and solve the two proldems
pletely in terms of Jacobi elliptic functions. Find expliexpressions for the so-
lutions in all parts of the phase plane corresponding tooregiof bounded and
unbounded motion, as well as on the separatrices betwesa tbgions.

Exercise 2.4.Consider a Duffing cubic oscillator on which periodic forgiis ap-
plied parametrically as follows

d=p, p=—q(l+ysin(Qt))+q. (2.49)

This is a case where the spring constant (or the length of soceded pendulum
model) is taken to vary sinusoidally about its constant @aNoote that the elliptic
point at the origin and the two saddle pointg#tl,0) remain at their place when
y#0.

(a) Linearize (2.49) about the point&1,0) and obtain the corresponding linear sta-
ble and unstable manifold&’, E-. Keepingy = 0 locate points on these manifolds
very close to the fixed points, which if propagated forwardi{ackward) in time
by (2.49) will accurately trace the two separatri@srepresenting the upper and
lower heteroclinic orbits joining the two saddles.

(b) Wheny = 0, construct the associatedk? linearized Poincaré mdp (and its
inverselL 1) by solving numerically (2.49) forward and backward in tiared plot-
ting points very close t¢+1,0) on the PSS, att = £271/Q. Evaluate the linear
stable and unstable manifoll§, E of the 2x 2 matriced. andL 2.

(c) Place many points on these linear manifolds very cloge-fig0) and propagate
them forward (and backward) in time by solving numericaly4@) and plotting
their iterates at = 2mm/Q, m= +£1 +2,.... Thus show that the corresponding
nonlinear manifolds no longer join smoothly but interseatle other repeatedly
forming heteroclinic tangles, within which dense sets @atit orbits can be found
according to Smale horseshoe dynamics.
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Problems

Problem 2.1.Study the general solution of the Hénon-Heiles problenhainte-
grable caséA = B, C = —1 as follows: Adding and subtracting the equations of
motion (2.27) in that case, show that they lead to tmcouplednonlinear oscilla-
tors. Use this fact to obtain two integrals, which are indefsat and in involution.
Plot the invariant curves in theX,Px) and (Y,R) surfaces of section and relate
them to the exact solutions of the problem given in terms odBeelliptic functions
(see Exercise 2.1). Discuss the dynamics of the systemlfealales of the energy
E>O0.

Problem 2.2.Use Mel'nikov’s theory as described in [163, 349] to deriveex-

pression for the distance between stable and unstable oldsdis a function of
the Mel’'nikov integral and the magnitude of the unperturbector field along the
invariant manifolds. Apply this theory to the case of theicubuffing oscillator

(2.38) as outlined in Sect. 2.3.1, evaluate the correspgndielnikov integral and
prove the result shown in (2.43). Repeat this analysis fepdrametrically driven
Duffing oscillator (2.49) and compare the results.

Problem 2.3.Study the cubic Duffing oscillator (2.37) in the cade- —8 = —1,
which describes a physical problem with a double well paéénAssume further-
more that the periodic perturbation is of the form

G=p, p=q—+&(—np+ysinQt), (2.50)

where—n p (with n > 0) is a term introducing dissipation. Draw the phase plane
curves of thee = 0 case and show that the origin is a saddle fixed point whobkesta
and unstable manifolds are joined by two symmetric homac$ialutions “embrac-
ing” two elliptic points at(0,+1). Apply Mel'nikov’s theory to show that fog £ 0
these manifolds split into homoclinic orbits whgrandy satisfy a certain inequal-
ity. Now solve (2.50) numerically, using the approach dibsct in Exercise 2.4, to
examine the validity of the inequality you derived fox(e <« 1. How accurate are
its predictions for the appearance of horseshoe chaos pratdéem?






Chapter 3
Local and Global Stability of Motion

Abstract In this chapter, we discuss in a unified way equilibrium psjipteriodic
orbits and their stability, which constitutecal concepts of Hamiltonian dynamics
together with ordered and chaotic motion, which are the eomof a more global
type of analysis. Using the Fermi Pasta UIBnFPU—3) model as an example, we
study the destabilization properties of some of its simglequlic orbits and connect
them to wider aspects of the motion in phase space. We shownizatly that the
spectrum of positive Lyapunov exponents, characterizingg#&on of strong chaos,
becomes invariant in the thermodynamic linfit,— « andN — o, with E/N =
const. The chapter ends with an introduction of the smalignaent index (SALI)
and the generalized alignment index (GALI) criteria fortiguishing ordered from
chaotic motion.

3.1 Equilibrium points, periodic orbits and local stability

3.1.1 Equilibrium points

Let us note first that Hamilton’s equations of motion (1.7#) ba written more com-
pactly in the form

dx On In
 \ —In On

Tt

> OH(x) = QOH(x), x=(q,p), (3.1)

wherely and @ denote theN x N identity and zero matrices respectively. This
notation, in fact, introduces the important matf2x which is fundamental in estab-

lishing thesymplectic structuref Hamiltonian dynamics. First of all, it enjoys a

number of important properties:

(i) QT = —Q (antisymmetry, (i) QT = Q! (orthogonality, (3.2)

33
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based on which one defines th®up of symplectic & n matrices Mas those that
satisfy the condition

M=MQMT = MT=—0OM1Q M1l=0QMTQT, (3.3)

with superscripts T and-1 denoting the transpose and inverse of a matrix respec-
tively.

As we discussed in Chapt. 1, the simplest solutions of a Hanién system are
its equilibrium (or fixed points)d p), at which the right hand sides of Hamilton’s
equations vanish,

dH(q,ﬁ):O’ 5H(qv@:o,k:1,2,...N (3.4)
dpk aqk

Thus, given a Hamiltonian system our first task is to find alfited points solving
the nonlinear equations (3.4). Next, we need to examineythardics near each one
of these points.

To do this we write the solutions of (3.1) as small deviatiabsut one of the
fixed points as

x(t) =(@,p) +<(1), [EMI <, (3.5)

(wheree is the maximum of the Euclidean norrig]|, ||p]|), substitute in (3.1) and
linearize Hamilton’s equations about this point to obtain

£(t) =A(a,p)é (1), (3.6)

where higher order terms fihave been omitted due to the smallness of the norm of
& (t) noted in (3.5). The constant matdxrepresents the Jacobian@fIH (x) eval-
uated at the fixed point, as explainedin (2.10) and (2.11g.iftportant observation
here is thatA can be written as the produst= QS, whereS= S' is a symmetric
matrix.

Clearly, the solutions of the linear system (3.6) will detare the local stability
character ofq, p) by telling us what kind of dynamics occurs in the vicinity bfg
equilibrium point. As explained in Chap. 1, we shall callstfixed pointlinearly
stableif all the solutions of (3.6) are bounded for &ll To find out under what
conditions this is true, let us write the general solutiothis system as

£(t) =€"¢(0) = X()¢(0), 3.7)

whereX(t) is called thefundamental matrixof solutions of (3.6), withX(0) = I,
the identity matrix. Clearly, the boundedness propertieth@se solutions depend
on the eigenvalues of the Hamiltonian matAx What do we know about these
eigenvalues? Many things, it turns out.

Observe that starting from the characteristic equatiopshésfy detA— ul) =0
and using the properties of symmetric matrices énd

defA— ul) = def{ QS— ul) = de{( QS— ul)" = de(ST QT — ul) =
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de(—SQ — pl) = (-1)MNdet(SQ + pl) = defQ(SQ + u)Q 1 =
det{ QS+ ul) =detA+ul)=0, (3.8)

we discover that ifu is an eigenvalue oA so is—pu. This implies that Hamilto-
nian systems can never have asymptotically stable (or biejthxed points. We,
therefore, conclude that a necessary and sufficient conditir such a equilibrium
point to be stable is that all the eigenvalues of its corradpw matrixA have zero
real part! And sinceéA is a real matrix, if it possesses an eigenvaglue- a +if3
(with a, B real), it will also have among its eigenvalugs=a — i3, u = —a +if
U=—a—ip.

Now we understand why in all thé = 1, N = 2 dof Hamiltonian systems studied
in Chap. 2, all stable fixed points hasematrices with purely imaginary eigenvalues
and the solutions in their neighborhood execute simple baicomotion. Further-
more, we also realize that a stable fixed point of a Hamiltosistem can become
unstable by two kinds dbifurcations

(i) A pair of imaginary (+if3) eigenvalues splittingn the real axisinto an
(a,—a) pair, or

(i) An eigenvalue pain+if) splitting into four eigenvalue&t+a +if3) in the
complex plane, in a type aomplex instability

Bifurcation (i) leads to an equilibrium of theaddletype, since(a,—a) corre-
spond to two real eigenvectors, along which the solution@8d) converge or di-
verge exponentially from the fixed point. These eigenvecidentify the so-called
stable and unstableuclideanmanifolds, respectivelygs, EY, of the fixed point.
When continued under the action of the full nonlinear equregiof motion (3.1)
these become the stable and unstable invariant manifétdé/Y, which may inter-
sect each other (or invariant manifolds of other saddle fp@idts) and cause the
horseshoe type of homoclinic (or heteroclinic) chaos weaaly encountered in the
examples of Chap. 2.

By contrast, bifurcation (i) occurs more rarely becauseduires that the four
imaginary eigenvalues of a stable equilibrium pointif;, =3), be degenerate
i.e. B1 = Bo. It also does not arise in Hamiltonian systems\bf= 1 dof (why?).
As we will see in all the examples of Hamiltonian lattices lgmad in this book,
bifurcation (i) is a lot more common and will thus appear gdiequently in the
pages that follow.

3.1.2 Periodic orbits

It is time now to discuss the next most important type of sotubf Hamiltonian
systems, which is their periodic orbits. You might expettaurse, the mathematics
here to become more involved and you would be right. Howeagrye will soon
find out, the wonderful instrument of the Poincaré map as@ésociated surfaces
of section will come to the rescue and make the analysis aakiee Let us begin
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by giving a more general definition of the Poincaré map threndne we used in
Chapt. 2.

In particular, we will assume that oardimensional dynamical system, cast in
the general formx = f(x) (see (1.1)) has a periodic solutigft) = X(t+ T) of period
T. Let us choose an arbitrary point along this o) and define a PSS at that
point as follows

2 = {x(t) / (x(t) =X(to)) - F(X(to)) = O} . (3.9)

Thus, 2y, is a(n— 1)-dimensional plane which intersects the given periodidét@tb
X(tp) and is vertical to the direction of the flow at that point. Clgamow a Poincaré
map can be defined on that plane as before, by

PS5, — 5, Xg1=Px, k=012 .. (3.10)

for whichxg = X(tp) is a fixed point, sincegy = Pxp. We now examine small devia-
tions about this point,
Xk =Ro+ Nk [Nl <&, (3.11)

(wheree is of the same magnitude g%p||), substitute (3.11) in (3.10) and linearize
the Poincaré map to obtain
Nkt+1 = DP(Xo) Nk, (3.12)

where we have neglected higher order termg mndDP(Xp) denotes the Jacobian
of P evaluated akg.

To determind® we may use thgariational equation®f the original differential
equations derived by writing(t) = X(t) 4+ £(t), whence linearizing (1.1) about this
periodic orbit leads to the system

Et)=AM)E®M), Al)=At+T), (3.13)

whereA(t) is the Jacobian matrix dfx) evaluated at the periodic orbift) = X.
The crucial question, of course, we must face now is: Howtegéwo linear systems
(3.12) and (3.13) related to each other?

Observe that we have used different notations for the snealations about the
periodic orbit:£ () in the continuous time setting of differential equationd gpin
the discrete time setting of the Poincaré map. This is reitjacause they represent
different quantities, it is also to emphasize that theirelisionality as vectors in the
n-dimensional phase spa@® (n = 2N for a Hamiltonian system) is differeng:(t)
is n-dimensional, whilgi is (n— 1)-dimensional! How are we to match these two
small deviation variables?

The answer will come from what is callédoquet theory[268, 349, 110]. First
we realize that since (3.13) is a linear system of ODEs it rpossess, in general,
n linearly independent solutions, forming the columns of the n fundamental
solutionmatrix M(t,tp) in

E(t) =M(t,t0)€(0), M(t,to) =M(t+T,to) (3.14)
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(see (3.7)). Now, if we change our basis at the pditif) so that one of the directions
of motion is along the directiowertical to the PSS (3.9), we will observe that the
nth column of the matriM(T,tp) has zero elements except at the last entry which is
1. Thus, if we eliminate from this matrix itgh row andnth column, it turns out that
its (n—1) x (n—1) submatrix is none other than our beloved Poincaré map)3.10
Surprised? That is the relation between the two approachegese seeking.

This means that if we could compute the so-called monodroiyixiM (T, to)
numerically we could evaluate its eigenvalugs.. . ., U,_1 (the last one being, =
1), which are those of the Poincaré map and determine thdistaf our periodic
orbit as follows: If they are all on the unit circle, i.gi| =1, i =1,...,n—1, the
periodic orbit is (linearlystable while if (at least) one of them satisfigs;| > 1 the
periodic solution isinstable(see Exercise 3.2).

But how do we compute the monodromy matkiT,to)? It is not so difficult.
Let us first sety = 0 for convenience and observe from (3.14) tk&0, 0) = I,. All
we have to do is integrate numerically the variational eiguat(3.14) fromt =0
tot =T, ntimes, each time for differentinitial vector (0,...,0,1,0,...,0) with
1 placed in theth position,i = 1,2,...,n. Note that since these equations are lin-
ear numerical integration can be performedatbitrary accuracyand is also not
too-time consuming for reasonable values of the pefio@nce we have calculated
M(0,0), we may proceed to compute its eigenvalues and determirstahaity of
the periodic orbit according to whether at least one of tleégenvalues has magni-
tude greater than 1.

In Problems 3.1 and 3.2 at the end of the chapter we urge tlieréa apply
the above theory to a periodically driven cubic Duffing datdr and a special case
of theN = 2 dof Hénon-Heiles Hamiltonian. Only if you solve theselgems you
will be able to appreciate the more elaborate applicatidriidanuet theory in the
sections that follow. More importantly, however, theselgbeans will also teach you
that stability of periodic orbits once relinquished is nagtl forever! It may indeed
be recovered (even infinitely) many times as we vary an ingmbgparameter like
the total energy of the systebn

3.2 Linear stability analysis

Now that we have learned how to study the linear stabilitypprties of periodic
solutions of Hamiltonian systems, it is time to wonder abihwet implications of
this analysis regarding the more “global” dynamics, whishr@ally what we are
interested in. Let us turn, therefore, immediately to thesslof one-dimensional
lattices (or chains) of coupled oscillators.

Our first example is the famous Fermi Pasta Ulam (FP8jnodel described by
theN dof Hamiltonian [44]

TPt

1
(Xj+1—Xj) +ZB(XJ+1_XJ)4:E3 (3.15)

I\)ll—‘
I\)ll—‘
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wherex; are the displacements of the particles from their equilitarpositions, and
pj = x; are the corresponding canonically conjugate momehia,a positive real
constant andt is the total energy of the system. Note that by not includimgeu-
bic nearest neighbor interactions in (3.15), we have kepingortant symmetry of
the system under the interchange— —x;, which will make our analysis simpler.
However, most of what we shall be discussing can also beesdtwdnen cubic inter-
actions are included with am coefficient before them in what is called the FlRU-
model (see Chapt. 5 and 6).

Let us focus on the special class of periodic solutions we ltalled Simple Pe-
riodic Orbits (SPOs), which have well-defined symmetries are known in closed
form. In particular the SPOs we shall be concerned with aeddtiowing:

I. For the FPU withperiodic boundary conditions

Xnpk(t) = X(t), Vit k (3.16)
The Out-of-Phase Mode (OPM) for FPU, witheven (often called the-mode)
Xj(t) = —Xjp1(t) =X(t), j=1,...,N. (3.17)
1. For the FPU model anfixed boundary conditions
Xo(t) = xn11(t) =0, Wt (3.18)

(a) The SPO1 mode, with odd,

%i(t) =0, Koj_1(t) = —Roj1(t) =R(1), j= 1% (3.19)

(b) The SPO2 mode, with =5+3m, m=0,1,2,... particles,

) =0, =123 52

Xi(t) = =xj42(t) =X(t), j=1,4,7,....N—1 (3.20)

Fortunately, the FPU system with fixed boundary conditiensrie of those ex-
amples where we can directly apply Lyapunov’s Theorem 1.Cludpt. 1: More
specifically, we can use it tprove the existencef SPOs as continuations of the
linear normal modes of the system, whose frequencies haveéli-known form
[44,131, 91, 136, 229]

o ™ _
wq_23|n(2(N+1)), g=1,2,...,N. (3.22)
This is so because the linear mode frequencies (3.21) andseatisfy Lyapunov’s
non-resonance condition for thea;s, stated in Theorem 1.2 for ajland general
values ofN. Thus, our SPO1 and SPO2 orbits, as NNMs of the FPU Hamiltonia
are identified by the indice= (N + 1)/2 andq = 2(N + 1) /3 respectively.
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As we discussed in the previous section, linear stabiliglysis of periodic so-
lutions can be performed by studying the eigenvalues of thaadromy matrix.
This leads to the interesting result that the critical epehgeshold values for the
first destabilization of the SPO1 solution satisfiggN 0 1/N, while for the OPM
solution (3.17) we findEc/N [0 1/N2, as shown in Figs. 3.1(a) and (b) respectively.

What does all this mean? Let us try to find out.

E/N

Fig. 3.1 (a) The solid curve corresponds to the energy per parfgf®N, for 8 = 1, of the first
destabilization of the SPO1 nonlinear mode of the FPU sy¢&#b) with fixed boundary con-
ditions, obtained by the numerical evaluation of the mooodr matrix, while the dashed line
corresponds to the functidi 1/N. (b) Same as in (a) with the solid curve depicting the firstales
bilization of the OPM periodic solution of the FPU systeml&. Here, however, the dashed line
corresponds to the functidn 1/N2. Note that both axes are logarithmic (after [60]).

3.2.1 An analytical criterion for “weak” chaos

As we discovered from the above analysis, the NNMs of the FRlhionian stud-
ied so far experience a first destabilization at energy tiessf the form

Ec L

WDN ,a=1o0r2 N-— o (3.22)
This means that for fixel, some of these fundamental periodic solutions become
unstable at much lower energy than others. We may, therefpect that those that
destabilize at lower energies will hagenaller chaotic regions around them, as the
greater part of the constant energy surface is still occlipyetori of quasiperiodic
motion. Could we then perhaps argue that near NNMs chaiaetdny the exponent
o = 2in (3.22) one would find a “weaker” form of chaos than in the- 1 case?

This indeed appears to be true at least for the FPU Hamiltomiadel. As was

recently shown in [131], the energy threshold for the dekztaltion of the lowq =
1,2,3,..., nonlinear modes, representing continuations of the spmeding linear
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modes (see (3.21)), satisfies the analytical formula

Ec e
N~ 6BN(N+1)’ (3.23)
and is therefore of the type = 2 in (3.22). Remarkably enough this local loss of sta-
bility coincides with the “weak” chaos threshold shown iA81 112] to have global
consequences regarding the dynamics of the system as a,\whladtds associated
with the breakup of the famousPU recurrencekin Chapt. 5 we shall examine
this very important phenomenon in detail. For the momentisesimply point out
that the destabilization of individual NNMs occurring alienergies appears to be
somehow related to a transition from a “weak” to a “stronggpe of chaos in the
full N particle chain.

Interestingly enough, it was later discovered [16, 13] thatenergy threshold
(3.23) for the lowg modes, also coincides with the instability threshold of 8BO2
mode which correspondstp=2(N+1)/3!In Fig. 3.2 we compare the approximate
formula (dashed line) with our destabilization threshad $PO2 obtained by the
monodromy matrix analysis (solid line) fBr= 0.0315 and find excellent agreement
especially in the larg8l limit.

Fig. 3.2 The solid curve

corresponds to the energy 20
Eou(N) of the first destabi-
lization of the SPO2 mode of
the FPU system (3.15) with
fixed boundary conditions
and 3 = 0.0315 obtained by
the numerical evaluation of
the eigenvalues of the mon-
odromy matrix. The dashed
line corresponds to the ap-
proximate formula (3.22) for
the g = 3 nonlinear normal

solution (after [13]). 0.2 .
5 50 200

-
» O 0O

N

o oo
> oo

We may, therefore, arrive at the following conclusions blas®the above results:
Linear stability (or instability) of periodic solutions ¢®rtainly a local property and
can only be expected to reveal how orbits behave in a limégabn of phase space.
And yet, we find that if these periodic solutions belong to ¢hess of nonlinear
continuations of linear normal modes, their stability @wer may have important
consequences for the global dynamics of the Hamiltoniatesydn particular, if the
exponent of their first destabilization threshold in (3.82) = 2 they are connected
with the onset of “weak” chaos as a result of the breakdowrRd Fecurrences. On
the other hand, itr = 1 as in the case of the SPO1 mode, they arise in much wider
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chaotic domains and have orbits in their neighborhood whigive from “weak”
to “strong” chaos passing through quasi-periodic statesnfing complexity, with
differentstatisticalproperties, as we describe in detail in Chapt. 7.

3.3 Lyapunov characteristic exponents and “strong” chaos

3.3.1 Lyapunov spectra and their convergence

Let us now study the chaotic behavior in the neighborhoodunfumstable SPOs,
starting with the well-known method of the evaluation of pectrum of Lyapunov
characteristic exponents (LCEs) of a Hamiltonian dynahsgstem,

L, i=1,....2N, L1 =Lmax>Lo>...> Lon. (3.24)

The LCEs measure the rate of exponential divergence oéilyithearby orbits in
the phase space of the dynamical system as time approaéinég.im Hamiltonian
systems, the LCEs come in pairs of opposite sign, so theirvs;amri\shesgizi\‘1 Li=0,
and two of them are always equal to zero corresponding toatlews along the
orbit under consideration. If at least one of them (the lstg@e)L; = Lnax > O,
the orbit is chaotic, i.e. almost all nearby orbits divergeanentially in time, while
if Lmax = O the orbit is stable (linear divergence of initially nearbmbits). The
numerical algorithm we use here for the computation of alEk@ the one proposed
in [31, 32]. A detailed review of the theory of LCEs and the rauimal techniques
used for their evaluation can be found in [313].

In theory,L; = Lij(x(t)) for a given orbitx(t) expresses the limit far— o of a
quantity of the form

L lw]

= —, (3.25)
W)
L = tlm K! (3.26)
wherew;(0) andw;(t), i = 1,...,2N — 1 are infinitesimal deviation vectors from

the given orbitx(t) (at timest = 0 andt > 0 respectively) that are orthogonal to the
vectortangentto the orbit (since the LCE in the direction along the orbizéso).
The time evolution ofv; is given by solving the variational equations of the system,
i.e. the linearized equations about the orbit, assumingtittealimit of (3.26) exists
and converges to the sarbg for almost all choices of initial deviationg; (0).

In practice, however, the above computation is more inl34, 32]: Since
the exponential growth of;(t) is observed for short time intervals, one stops the
evolution ofw;(t) after some timel;, records the computddiTl, orthonormalizes
the vectorsw;(t) and repeats the calculation for the next time intefgglwitht =0
replaced byt = Ty), etc. obtaining finallyL; as an average over many sufh j =
1,2,....nas
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(LI
Li = ﬁ leK-'rj, n— oo. (3.27)

For fixedN it has been found that &increases, the Lyapunov spectrum (3.24) for
all the unstable NNMs studied in the previous section apptafall on a smooth
curve [16, 13].

Let us examine this in more detail by plotting the Lyapunosctpa of two neigh-
boring orbits of the SPO1 and SPO2 modes, of the FPU systemfingid boundary
conditions, forN = 11 dof and energy valuds, = 1.94 andE, = 0.155 respec-
tively, where both SPOs have just destabilized (see FigaB.3Here, the maximum
Lyapunov exponents;, are very smal(~ 10~#) and the corresponding Lyapunov
spectra are quite distinct.

Raising now the energy té = 2.1, we observe in Fig. 3.3(b) that the Lyapunov
spectra of the two SPOs are closer to each other, but stié different. AtE =2.62,
however, we see that the two spectra have nearly convergbe tame exponen-
tially decreasing function

L(N)Oe N, i=12,...,N, (3.28)

and their maximal Lyapunov exponents are virtually the sahte a exponents
for the SPO1 and SPO2 are found to be approximat&yad 232 respectively.
Fig. 3.3(d) also shows that this coincidence of Lyapunocspepersists at higher
energies.

3.4 Distinguishing order from chaos

We have realized by now that if we wish to make serious pragrethe study of the
dynamics of Hamiltonian systems we must be able to develograte and efficient
tools for distinguishing between order and chaos, bothllip@ad globally. This
means that these tools must be able to: (a) characterizectlyrthe time evolution
of any given set of initial conditions and (b) approximatelgntify regimesof or-
dered vs. chaotic motion on a constg?N — 1)-dimensional energy surface in the
phase spacR?\.

The most popular example of such a tool is, of course, the lwyap exponents.
This is indeed true and we shall frequently mention theserapts in the chapters
that follow. We must note, however, that powerful as they mayhey also have a
serious drawback: Their values vary significantly in timel amay only be used in
the long time limit when the exponents have converged witisfeatory accuracy.

Furthermore, it is well-known that positiveMLE not only implies chaotic be-
havior, it alsoquantifiesit: As is commonly observed, the larger the MLE value
the “stronger” the chaotic properties, i.e. the faster thrergence of nearby orbits.
What happens, however, when we are very close to a regiondefred motion,
where the MLE converges very slowly to a non-zero value,dbi¢s so at all? And
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Fig. 3.3 (a) Lyapunov spectra of neighbouring orbits of the SPOliddmles) and SPO2 (dashed
lines) modes of the FPU model (3.15) with fixed boundary cooi$, forN = 11, at (a) energies
E = 1.94 (SPO1) ancE = 0.155 (SPO2), where both modes have just destabilized, (bgne
E = 2.1 for both SPOs, where the spectra are still distinct, (c) @mbergence of the Lyapunov
spectra of neighboring orbits of the SPOs at enéigy 2.62 where both of them are unstable. (d)
Coincidence of Lyapunov spectra continues at enérgy5 (after [13]).

how do we know if it is not exactly zero and we are in fact follogza quasiperiodic
rather than a chaotic orbit?

It is for this reason that many researchers have developed tbe last two
decades, alternative approaches to characterize orblawiiltonian systems as
ordered or chaotic. These methods can be divided in two ncajegories, the ones
which are based on the evolution of deviation vectors fronivargorbit, like the
computation of MLE, and the ones which rely on the analysibefparticular orbit
under study.

Among other chaoticity detectors belonging to the samegoayewith the eval-
uation of the MLE, are the fast Lyapunov indicator (FLI) [14@1, 138] and its
variants [27, 28], the smaller alignment index (SALI) [3B26, 317] and its gen-
eralization, the so-called generalized alignment indeXL(I3[318, 319, 250], the
mean exponential growth of nearby orbits (MEGNO) [98, 98, ttelative Lyapunov
indicator (RLI) [299, 300], as well as methods based on théystf spectra of quan-
tities related to the deviation vectors like the stretcmngbers [139, 234, 343], the



44 3 Local and Global Stability of Motion

helicity angles (the angles of deviation vectors with a fidizdction) [105], the twist
angles (the differences of two successive helicity andgiE3], or the study of the
differences between such spectra [220, 344].

Of all these methods, we have chosen to dwell on two indisatwat we have
found most convenient and useful in our studies: the SALI éwedGALI. These
indicators are derived from a detailed analysis of the tianal equations describ-
ing the tangent space of the orbits as time evolves. Theycerate and efficient
in the sense that they: (a) correctly identify the chaotitureof the orbits more
rapidly than other methods and, perhaps more importabf\syccessfully charac-
terize quasiperiodic motion providing also the number afelisions of the torus on
which it lies. In the next subsections we discuss briefly thel%and GALI indica-
tors and return to examine them more carefully in later airgpivhen we address
more delicate issues regarding the complexity of Hami#iordynamics.

3.4.1 The SALI method

The SALI method was originally developed to distinguishwestn ordered and
chaotic orbits in symplectic maps and Hamiltonian systegi®] 316, 317], and
was soon applied by many researchers to a number of impakamples [328,

265, 58, 76, 236, 322, 323, 272, 248, 56, 325, 237, 245]. Tepeterthis indicator,

one follows simultaneously the time evolution of a refeeencbit along with two

deviation vectors with initial conditions1(0), w2(0), normalizing them from time
to time to 1, as follows

Wi(t) = IIxS;I i—12. (3.29)
The SALlI is then defined as
SALI(t) = min{[[W1(t) +Wa(t)[[, [IWa(t) —W2(t) }. (3.30)

In references [312, 317] it has been shown that, in the casbanftic orbits the
deviation vectorsvy, W, eventually become aligned in the direction of the MLE
and SALIt) falls exponentially to zero as

SALI(t) O e (Limta)t, (3.31)

L1, Lo being the two largest LCEs. In the caseoodered motionon the other hand,
the orbit lies on a torus and eventually the vectvisw, fall on the tangent space

of the torus, following @1 time dependence. In this case, the SALI oscillates about
values that are different from zero [312, 316], i.e.

SALI~ const > 0, t — oo. (3.32)

Thus, the different behavior of the index for ordered andticarbits allows us
to clearly distinguish between the two cases.
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3.4.2 The GALI method

The GALlI is an efficient chaos detection technique introdliog318] as a general-
ization of SALI. This generalization consists in the fa@dttGALI uses information
of more than two deviation vectors from the reference ohb#ding to a faster and
clearer distinction between regular and chaotic motion tBALI. The method has
been applied successfully to different dynamical systeamshfe discrimination be-
tween order and chaos, as well as for the detection of quasitie motion on low
dimensional tori [14, 96, 319, 247, 249, 65, 246, 245].

The Generalized Alignment Index of ordefGALI ), 2 < k < 2N, is determined
through the evolution ok initially linearly independent deviation vectovg (0).
As in the case of SALI, deviation vectovg(t) are normalized from time to time
to avoid overflow problems, but their directions are lefaitt Thus, according to
[318] GALI is defined as the volume of theparallelepiped having as edges the
unitary deviation vectorg;(t) = w;(t)/|lwi(t)|l, 1 = 1,2,...,k, determined through
the wedge product of these vectors as

GALIK(t) = [Wa(t) AWa(t) A - AR (D)]] (3.33)

where|| - | denotes the usual norm. From this definition it is evident ithat least
two of the deviation vectors become lineadigpendenthe wedge productin (3.33)
becomes zero and the GAlVanishes.

In the case of a chaotic orbi]l deviation vectors tend to become linearly de-
pendent, aligning in the direction defined by the MLE, and GAlends to zero
exponentially following the law [318]

GALI(t) O e (L) +(La—tg)++{La-Lilt (3.34)

whereLy,...,Lg are thek largest LCEs.

In theR?N phase space of @ dof Hamiltonian flow or a RD map, regular or-
bits lie ons-dimensional tori, with 2 s < N for Hamiltonian flows, and £ s< N
for maps. For such orbits, all deviation vectors tend to dallthe s-dimensional
tangent space of the torus on which the motion lies. Thusgistart withk < sgen-
eral deviation vectors they will remain linearly indepenten thes-dimensional
tangent space of the torus, since there is no particulaonefas them to become
aligned. As a consequence, GAlrtemains practically constant and different from
zero fork < s. On the other hand, GAkltends to zero fok > s, since some devi-
ation vectors will eventually become linearly dependemtparticular, the generic
behavior of GAL for quasiperiodic orbits lying os-dimensional tori is given by
[318, 96, 319]

constantif 2<k<s
GALI(t) O{ @  ifs<k<2N-s (3.35)
o if2N—s<k<2N
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We note that these estimates are valid only when the comelépg conditions are
satisfied. For example, in the case of 2D maps the only peskibls is ar(s =)1-
dimensional invariant curve, whose tangent space is aldiomé&nsional. Thus, the
behavior of GALb (which is the only possible index in that case) is given by the
third case of equation (3.35), i.e. GALII 1/t?, since the first two are not applica-
ble. From (3.35) we also deduce that the behavior of GAtl the usual case of
quasiperiodic orbits lying on aN-dimensional torus is given by

constant if 2< k<N
GALIy(t) O { t2<k{N) ifN < k< 2N - (3.36)

Exercises

Exercise 3.1.(a) Use the definition of2 in (3.1), its properties listed in (3.2) and
(3.3) to show that d&® = 1 and deM = +1. Then prove that the determinant of the
2N x 2N symplectic matrixM is exactly 1.

Hint: You may find it helpful to use the theorem of polar fa@ation of Linear
Algebra (see [179], p. 188) to show that bet> 0.

(b) Finally, show that the eigenvalues of the matvixare expressed as the set of

inverse pairS[J.l, M2, ... N, N1 = 1/”15 <oy 2N = 1/I1N

Exercise 3.2.Consider thex-dimensional mapy 1 = Pxx, k=0,1,2,..., whereP

is a constant matrix. Assume that an invertible mafrexists such that, in the new
basisx = Sy, D = S 'PSis a diagonal matrix whose elements are the eigenvalues
of P, i.e. D = diag(1, ..., Un). Clearly, in this basis, the solution of the problem
for any initial conditionyg = S 1xo is yx = DXy, k = 0,1,2,.... Show that if all
eigenvalue$ui| < 1,i=1,2,...,n, the map has only bounded solutionswhile if
there is (at least) one of them satisfyifg| > 1 the general solution is unbounded.

Problems

Problem 3.1.Let us revisit the cubic Duffing oscillator of Exercise 2.4 the un-
damped casea = 0:

4=p, p=q(l+ysinQt))—q® (3.37)

(note the different signs in the second equation). Chooswadl salue of the driving
amplitude, e.gy = 0.01 with Q = 2 and solve numerically the equations of motion
to determine the periodic solutiongt), pi(t), i = 1,2 crossing the PSS (2.35) at
points P, P, close to the equilibrium point&t1,0) respectively of the unforced
y = 0 case. For small enough these should ba-periodic orbits of (3.37) that are
stable, in the sense that they represent elliptic pointsePincaré map (2.36).
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(a) Based on your knowledge of these solutions, solve nwalgrihe 2-dimensional
variational equations about them for initial conditidds0) and(0, 1) to determine
the 2x 2 monodromy matrixM(7t,0) (note that due to the simplicity of this prob-
lem the dimensionality of the monodromy matrix coincidethwhat of the Poincaré
map). What are the eigenvaluesM{r, 0) and what do you conclude from them?
(b) Start increasing the value gfand repeat the previous calculationh{,0).
Can you locate the first criticak value at which the above tww periodic solutions
become unstable?

Problem 3.2.Consider the non-integrable Heénon-Heiles system (2.30)kamil-
tonian

1 1 1
H(xY, e, By) = 5 (P + B) + 5 (¢ +Y9) + Xy — 2y° = E. (3.38)

(a) Show that this system has an exact periodic solutioneofdimx{t) = 0, y(t) =
Acn(ut,k?), with A > 0, where cn is the Jacobi elliptic cosine function with perio
T that depends on the modulgsand the constant&, k, u satisfy certain relations.
(b) Write the 4-dimensional variational system of equagiahout this solution and
solve them numerically to determine the associated momagmmatrix M(T,0).
Examining its eigenvalues, show that for small enough \&alfeA this periodic
solution is linearly stable.

(c) Increasing the value @k repeat the previous calculation Bf(T,0) and locate
the first critical value oA = A; (and corresponding value of the eneigy= E;) at
which the periodic solution becomes unstable. What happeyeu keep increasing
A (and the energ¥)? Hint: You should find a sequence of bifurcationsAat>
A 1(Ex > Ex1),k=2,3,... that converges téy — 1(Ex — 1/6).






Chapter 4
Normal Modes, Symmetries and Stability

Abstract The present chapter studies nonlinear normal modes (NNMs)upled
oscillators from an altogether different perspective.Bieg entirely on periodic
boundary conditions and using the Fermi Pasta UBa{PU— 3) and FPU-a mod-

els as examples, we demonstrate the importancésofete symmetrieis locating
and analyzing exactly a class of NNMs called one-dimensitneshes”, depend-
ing on a single periodic functiog(t). Using group theoretical arguments one can
similarly identify n-dimensional bushes described dpyt), ..., Gn(t), which repre-
sent quasiperiodic orbits characterizedrbiywcommensurate frequencies. Express-
ing these solutions as linear combinations of single byshisgossible to simplify
the linearized equations about them and study their styabilialytically. We empha-
size that these results are not limited to monoatomic particains, but can apply
to more complicated molecular structures in two and thregiapdimensions, of
interest to solid state physics.

4.1 Normal modes of linear 1-dimensional Hamiltonian lattces

As the reader recalls, we began our discussiol afof Hamiltonian systems in
Chap. 2 by analyzing the case of two coupled linear oscittatbequal mass and
spring constank described by (2.14) under fixed boundary conditions. Indbgd
a simple canonical transformation of variables (2.17), veeenable taincouplethe
two equations of motion into what we called their normal meaeables and obtain
the complete solution of the problem as a linear combinaifarormal mode oscil-
lations with frequenciesy = w, w, = wV/3, w = /k/m. How would we proceed
if we were to perform the same analysidNeuch coupled linear oscillators? Good
question.

Let us note first that the Hamiltonian function of this system

1 N 2 N
H:_mz i Ezqul—QJ =E, (4.1)

49
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leads to the equations of motion

20y
%:wz(qj,l—qu+qj+1), j=12,...,N (4.2)
imposing again fixed boundary conditiog{t) = gn1(t) =0, po(t) = pnra(t) =

0, with w? = k/m. This may be called an “ordered”, or translationally ineati
particle chain (one-dimensional lattice), since all masaed spring constants are
equal. In Chap. 6 we will discuss the very important case dfsarderedlattice
where translational invariance is broken by a random seledf the parameters of
the system. For the time being, however, it suffices to takle mo loss of generality
w=1.

How can we uncouple equations (4.2) into a sédtlaingle harmonic oscillators?
The caséN = 2 was analyzed in Chap. 2 and easily led to the transformé2id).
Here, we are dealing with a systemNfODESs (4.2) that, when written in matrix
form, involves a tridiagonal matri$ on its right hand side. Since we are looking
for normal mode oscillations witN frequenciesy,, we proceed to diagonalize this
matrix introducing new coordinates called normal modealadsQq, Py by the
transformation

= \/ZZQq sin(( 027 ). pj—Fqusm(N‘“ ). @

in terms of which (4.1) reduces to the HamiltoniarNbtincoupled harmonic oscil-
lators

1 N
Hy = qu + quq, (4.4)
whose frequencies
. qrr
= - <q< .
Wy 25'”<2(N+1)>’ 1<g<N (4.5)

are related to the eigenvalukgof Sby the simple formuldq = wé (see (3.21) and
Exercise 4.1).

Before studying this case further, let us also write downahalogous result
for the case of periodic boundary conditiam$t) = gjn(t), pj(t) = pj+n(t), j =
1,...,N. As we ask you to demonstrate in Exercise 4.2, the reducfi¢h d) to the
Hamiltonian (4.4) olN uncoupled oscillators is achieved through the transfaonat

1 Y 2mg) 2y j
Qq = N le(smT —i-cosT)q,,
1 d o 2m) 2mj
Py = N (smT +CosT)pJ, (4.6)
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and the normal mode frequencies now take the form

wq:ZSin(an), 1<qg<N . 4.7)

4.2 Nonlinear normal modes (NNMs) and the problem of
continuation

Now that we have understood the importance of normal modiilinear case let
us turn to the more difficult situation of coupled systemsailimear oscillators. In
particular, we shall focus on our old friend the FPB Hamiltonian (3.15), which
we already met in Chap. 3 as

1N N1 1
H=2% i+ Y S(@a-a)°+ 381 -a)* =E, (4.8)
21: j P2 2 |+ J 4 ]+ J

representing ahl-particle chain with quadratic and quartic nearest neigliter-
actions. In Sect. 3.2, we studied some of its SPOs, under éirdgeriodic bound-
ary conditions, and found that their linear stability prdjes had important conse-
quences for the global dynamics of the system.

Clearly, these SPOs are linear modes, which continue tb&xihe parametgr
in (4.8) is turned on and our oscillator system becomes neati Recall that Lya-
punov’s Theorem 1.2 asserts that all normal modes of thailiie= 0 system can
be rigorously continued to the nonlinear lattice, for fixedibdary conditions. This
is because the linear frequencies (4.5) can be shown in nesgsdo be mutually
rationally independent (see Exercise 4.1). Unfortunatsigpunov’s theorem does
not apply to the FPU problem under periodic boundary cooialti

To circumvent this problem, we will construct the corresgiog NNMs in this
chapter using discrete symmetries of the equations of metial discuss their sta-
bility properties in detail. For the time being let us contpleur discussion of the
NNMs of the FPU- system under fixed boundaries. This is indeed a very impor-
tant problem as these NNMs are intimately connected witthisterical paradox of
the FPU recurrences, which we shall discuss in detail in Chap

Note that substituting (4.3) into (4.8) allows us to write filPU- 3 Hamiltonian
in the formH = H, 4+ Hy in which the quadratic part correspondshaincoupled
harmonic oscillators, as in (4.4) above. On the other hdml quartic part of the
Hamiltonian becomes

__F S
Hy = 8N T) q’|’mz!n:lcq’l’m’n%m WnwhQqQI QmQn, (4.9)

where the coefficientSy mn take non-zero values only for particular combinations
of the indicegy,l,m,n, namely
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Colmn = ; (O 1£meen,0 — Ogi 1bmen £2(N+1)) - (4.10)

in which all possible combinations of the signs arise, withy; = 1 fori = j and
&j = 0fori # j. Thus, in the new canonical variables, the equations ofanaiie
expressed as

N
> Colmn@q® GmhQQmQn - (4.11)

I, mn=1

Qq‘f'ngq:—ﬁ

If B =0, the individual harmonic energi&s, = (P§+ w&Qﬁ)/Z are preserved
since they constitute a set bffintegrals in involution. Whei8 #£ 0, however, the
harmonic energies become functions of time and only thé éstargyE, (4.8), is
conserved. One may thus define a specific energy of the syster & /N, while
the average harmonic energy of each mode over a time intervdl < T is given
by the integraEq(T) = £ f§ Eq(t)dt.

As we discuss in Chap. 5, in classical FPU experiments, amsstith the total
energy distributed among a small subset of linear modesn,Tée every physics
student knows, equilibrium statistical mechanics predicat, due to nonlinear in-
teractions, after a short time interval the energy of all-esnited modes will grow
and a kind ofequipartitionwill occur with the energy being shared equally by all
modes, i.e. _

lim Eq(T)=¢ ,9=1,...,N. (4.12)
T—00

But this does not happen in the FPU system! At least for a rahlgsv E values,
one finds that the total energy returns periodically to thigioally excited modes,
yielding the famous FPU recurrences which persist even vihémcomes very
large. The paradox lies in the fact that such deviations fegunpartition were not
expected to occur in a nonlinear and non-integrable Handtosystem as the FPU.
Is it still a paradox to date? Not any longer, we claim. As Vi explained in
Chap. 5, the dynamics of FPU recurrences can be understoertia of exponential
localization of periodic and quasiperiodic solutiongjimodal space.

4.3 Periodic Boundary Conditions and Discrete Symmetries

Let us recall from the above discussion that, when periodimdary conditions are
imposed, i.edj = gjn, Pj = Pnyjy ] =1,2,..., N, the linear mode spectrum of the
FPU{B particle chain becomes degenerate foNaind Lyapunov’s theorem cannot
be invoked. How do we proceed to study existence and stabiliNNMs in that
case? As we explain below, this is a situation where the ifigation of the system’s
discrete symmetries turns out to be very helpful in the asislyf the dynamics.

In this chapter we shall demonstrate how one may use the padvwechniques
of group theory to establish the existence of such NNMs foragety of me-
chanical systems, including particle chains in one dinmmsas well as certain 2-



4.3 Periodic Boundary Conditions and Discrete Symmetries 3 5

dimensional and 3-dimensional structures of interest tiol state physics. These
NNMs are simple periodic orbits, which we shall calhe-dimensional bushes
We will then show how one can combine such periodic soluttonform multi-
dimensional bushes of NNMs and exploit symmetries to sifyplie variational
equations about them and study their (linear) stability.

4.3.1 NNMs as one-dimensional bushes

Let us illustrate the main steps of the bush theory on the BRt&miltonian system
(4.8). The ODEs describing the longitudinal vibrationsteg #PUS chain can be
written in the form

qi: f(qurl_qi)_f(qi_qi*l)a i:].,...,N, (413)

whereq;(t) is the displacement of thi¢h particle from its equilibrium state at time
t, while the forcef (Aq) depends on the spring deformatidq as follows:

f(Ag) = Ag+ B(Ag)>. (4.14)

We also assume thBt> 0 and impose periodic boundary conditions. Thus, we may
study the dynamics of this chain by attempting to solve (#}f&Bthe “configura-
tion” vector

X(t) = {au(t),02(t), ...,an(t) }, (4.15)

whose components are the individual particle displacesment

As is well-known, it is pointless to try to obtain this vectrs a general solution
of (4.13). We, therefore, concentrate on studying speoiaitions represented by
the NNMs described in the previous section. In particuletr,us begin with the
following simple periodic solution

X(t) = {q(t), —4(t),4(t), —a(v), .., a(t), —at)}, (4.16)

which is easily seen to exist in the FP{3 chain with an even number of particles
(N mod 2= 0). This solution is called the OPM orm*mode” and is fully deter-
mined by only one arbitrary functiog(t) as we already discovered in Chap. 3. It
represents an example of the type of NNMs introduced in [28@] expresses an
exact dynamical state which can be written in the form

X(t)=4t){1,-1,]1,-1,|...,|1,-1}. (4.17)

Hence, the following question naturally arises: Are theng ather such exact
NNMs in the FPUB chain? Some examples of such modes are already known in
the literature [275, 286, 306, 307, 354, 221, 13, 206], urdeious terminologies.
Below we list these exact states in detail
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X(t)=4(t){1,0,-1,]1,0,-1,],...}, W’ = 3, (Nmod3=0), (4.18)

X(t)=qt){1,-2,1,]1,-2,1,],...}, «?*=3, (Nmod3=0), (4.19)
X(t) =§(t){0,1,0,-1,/0,1,0,—1,],....}, (N'mod 4=0), (4.20)
X(t) =qt){1,1,-1,-1,]1,1,—-1,-1|,...}, (Nmod 4=0), (4.21)

X(t) =§(t){0,1,1,0,—-1,-1,/0,1,1,0,—-1,-1],...}, w?’=1, (Nmod6=D0).
(4.22)

Let us comment on certain properties of the above NNMs: Nwdein (4.17)—
(4.22) we have identified for each of these NNMs a primitivié @ivided by ver-
tical lines), whose number of elementsis called the multiplicity number. These
numbers have the valuasi= 2 for (4.17),m = 3 for (4.18) and (4.19)n = 4 for
(4.20) and (4.21) anch = 6, for (4.22).

Each of the NNMs (4.17)—(4.22) depends on only one funaiibhahd is, there-
fore, said to describe ane-dimensionaldynamical domain”, borrowing the term
from the theory of phase transitions in crystals. For exampbnsider the mode
(4.18): It is easy to check that cyclic permutations of eadinipive cell produces
other modes, which differ only by the position of their statry particles. As a con-
sequence, these NNMs possess equivalent dynamics andticufze, turn out to
share the same stability properties. Thus, we only needittysine representative
member of each set.

Many aspects of existence and stability of NNMs have beecudied in the
literature [88, 90, 286, 275, 306, 307, 354, 221, 13, 69, 304]. What is important
from our point of view is to pose certain fundamental questiooncerning these
NNMs, which we shall proceed to answer in the sections tHkivio

Q1) Is the list (4.17)—(4.22) of NNMs for the FPBchain complete? Indeed, at
first sight, it seems that many other NNMs exist, for exampledes whose multi-
plicity numbermis different from those listed above.

Q2) What kind of NNMs arise in nonlinear chains with diffet@reractions than
those of the FPUB chain? In most papers (see [275, 306, 307, 354, 206]) the NNMs
listed above are discussed by analyzing dynamical equatonnected only with
FPU- inter-particle interactions.

Q3) Do there exist NNMs for Hamiltonian systems that are ntaaplicated
than monoatomic chains? For example, can one pose this@uéstdiatomic non-
linear chains (with particles having alternating mass&slimensional (2D) lattices,
or 3D crystal structures?

Q4) Can one construct exagetulti-dimensional bushes nonlinearN-particle
Hamiltonian systems and study their stability by locating tinstable manifolds of
orbits characterized by a number of different frequencieswe shall discover in
subsequent sections, there exist interesting domaingofaemotion depending on
more than one frequency and characterized by families ofigaeodic functions,
which forms-dimensional tori, withs > 2.

W’ =2,
W’ =2,
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4.3.2 Higher-dimensional bushes and quasiperiodic orbits

Let us consider the following exact solution of the FPBWhain withN mod 6= 0:

X(t) ={0,Ga(t), G(t),0,—G2(t), —Gr(t)] ... [0, Ga(t), G2(t), 0, —Ga(t), —Ql(t()|}-23)
4,
This bush has a multiplicity numben = 6 and is defined by two functiong; (t)
anddp(t), satisfying a system of two nonlinear autonomous ODEs. JTihissan ex-
ample of what we call a two-dimensional bush that represenéxact quasiperiodic
motion involving two frequencies.

In the sections that follow, we will show that the theory ofshas gives defi-
nite and quite general answers to the above questions QT -Qhiinear systems
with discrete symmetries. We shall then proceed to answestqun Q4, using the
analytical and numerical results described in Chap. 5.

4.4 A group theoretical study of bushes

Let us begin with the case of NNMs, which represent one-dsioeral bushes of
orbits that help to determine all symmetry groups of the &qna describing the
vibrations of a given mechanical system. The set of thesapgconstitutes the
parentsymmetry group of all transformations that leave the giwesiesm of equa-
tions invariant. Let us consider, for example, the dynairecaations (4.13) with
(4.14) for the FPUB chain with periodic boundary conditions and an even number
of particles. Clearly, these remain invariant under théoaodf an operaton that
shifts it by the lattice spacing. This operator generates the translational group

T={eaa. . a1, a'=e (4.24)

where€is the identity element and is the order of the cyclic group. The operator
ainduces a cyclic permutation of all particles of the chaid,aherefore, acts on the
configuration vectoK (t) of (4.15) as follows

ax(t) = a{au(t),qe(t),....an-1(t),an(t) } =
{qN(t),ql(t),qz(t),...,qN,l(t)}. (4.25)

Another important element of the symmetry group of transi@tions of the
monoatomic chain is thmversioni with respect to the center of the chain, which
acts on the vectoX (t) in the following way

iIX(t) = i{qu(t),q2(t),....an-1(t),an ()} =
{=an(t), —an-1(t),..., —G2(t), —au(t) }. (4.26)
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The complete set of symmetry transformations, of coursdydes also all products
aki of the pure translatiors {k = 1,2, ..., N — 1) with the inversion and forms the
so-called dihedral group which can be written as a direct sum of the teasets T
andT -i

D=T®T-i (4.27)

This is a non-Abelian group induced by twenerators(a andi) through the fol-
lowing generating relations

AN

3 2

=8 (?=¢ ija=al. (4.28)

Clearly, operatora andi induce the following changes of variables

a: du(t) = an(t),dz2(t) = qa(t),....an(t) = an-1(t); (4.29)
i ql(t) <~ —qN(t),qZ(t) > —qul(t),C{3(t) > —quz(t), e ’

It is now straightforward to check that upon acting on (48 transformation
(4.29) the system is transformed to an equivalent form. idege since (4.13) are
invariant under the actions af andi, they are also invariant with respect to all
products of these two operators and, therefore, the dihgdoap D is indeed a
symmetry group of equations (4.13) for a monoatomic chath wrbitrary inter-
particle interactions.

In the case of the FPB-chain, let us introduce the operatowhich changes the
signs of all atomic displacements without their transposit

axX = 0{ou(t), d2(t), .., an-1(t),an(t) } = {—a(t), —02(t),..., —an-1(t), —Q&(ggj
It can be easily checked that the operatageherates a transformation of all the
variablesgi(t), i =1,...,Nin (4.13), (4.14), which leads to an equivalent form of
these equations. Therefore, the operatand all its products with elements of the
dihedral grouD belong to the full symmetry group of the FRBJehain. Clearly,
the operatou tommutesvith all the elements of the dihedral grolpand thus we
can consider the group

G=D®D-a (4.31)

as the parent symmetry group of the FBl&hain. The grougs contains twice as
many elements as the dihedral grddand, therefore, possesses a greater number
of subgroups.

4.4.1 Subgroups of the parent group and bushes of NNMs

Let us consider now a specific configuration vecxéb (), see (4.15), which de-
termines a displacement pattern at tim@nd let us act on it successively by the
operatorg that correspond to all the elements of a parent gi@uphe full setG;

of elements of the grou@ under whichx () (t) turns out to be invariant generates a
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certain subgroup o6 (Gj C G). We then calX () (t) invariant under the action of
the subgrou; of the parent grougs and use it to determine the bush of NNMs
corresponding to this subgroup.

Thus, in the framework of this approach, one must list allghkgroups of the
parent groupG to obtain all the bushes of NNMs of different types. This can b
done by standard group theoretical methods. In [90] a simiyigallographic tech-
nique was developed for singling out all the subgroups ofpdwent group of any
monoatomic chain, following the approach of a more geneethod [87, 86, 82].
Here, we demonstrate how one can obtain bushes of NNMs ifubgreups are
already known.

Let us consider the subgroug of the dihedral grou. EachG; contains
its own translational subgroup; C T, whereT is the full translational group
(4.24). It N is divisible by 4, say, there exists a subgrolyp= [4*] of the group
T = [4)]. If a vibrational state of the chain possesses the symmatypd, = (%] =
{&,a* a8 ...,aN*}, the displacements of atoms that lie at a distarac&#@m each
other in the equilibrium state turn out to be equal, sincedperatora® leaves the
vectorX(t) invariant.

For example, for the casd = 12, the operatoa® permutes the coordinates
of X ={q1,02,...,012} taken in quadruplet&i, gi1,0i+2,0i+3), i = 1,5,9, while
from equatiora®X (t) = X(t) one deduces; = ¢4, i = 1,2,3,4. Thus, the vector
X(t) contains 3 times the quadruple}s d, s, ds, Whereq;(t) (i = 1,2,3,4) are
arbitrary functions of time and can be written as follows

X(t) = { au(t), 02(t), aa(t), Ga(t) | da(t), d2(t), da(t), a(t) | ql(t)7qz(t)7q3(t),q(4(t?22}).
4,
In other words, the complete set of atomic displacementbealivided intd\ /4 (in
our caseN/4 = 3)identicalsubsets, which are callesttended primitive cell$n the
bush (4.32), the extended primitive cell contains four at@md the vibrational state
of the whole chain is described by three such cells. Thusexttended primitive
cell for the vibrational state with the symmetry grolip= [4*] has size equal to
4a, which is four times larger than the primitive cell of the ghat the equilibrium
state.

It is essential that some symmetry elements of the dihedoalpD disappear
as a result of the symmetry reductibn= [4,i] — T4 = [4%]. There are four other
subgroups of the dihedral grolip corresponding to the same translational subgroup
T4 = [&%), namely

[a*1], [aai], [a* &%), [a%a&%]. (4.33)

There exist only five subgroups of the dihedral group (Wthmod 4= 0) con-
structed on the basis of the translational grdyp= [4*]: This one and the four
listed in (4.33).

Now, let us examine the bushes corresponding to the subg(du@i). The sub-
group[a®,i] consists of the following six elements

84 a8 i a i =iat. (4.34)
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The invariance oK (t) with respect to this group can be written as follows:
a*x(t) = X(t), iX(t)=X(t), (4.35)

while the invariance of the vectot(t) under the action of the group generat@§
and[f] guarantees its invariance under all elements of this group.

As explained above, the equatiafiXt) = X(t) is satisfied by the vectoX(t)
(see (4.32)), whilgX (t) = X(t) also holds, from which we obtain the following
relationsg; (t) = —qa(t), g2(t) = —qgs(t). Therefore, foN = 12, the invariant vector

X(t) of the group &*,1] can be written in the form

X(t) = {au(t),g2(t), —qa(t), —0a(t)| qa(t), a(t), —02(t), —ua(t)
| (t),q2(t), —a(t), —au(t)},  (4.36)

whereq; (t) andgy(t) are arbitrary functions of time.

Thus, the subgroupaf;i] of the dihedral grouf generates avo-dimensional
bush of NNMs. The explicit form of the differential equatgoverning the two
variablesq; (t) andgy(t) can now be obtained by substitution of the ansatz (4.36)
into the FPUB equations (4.13), (4.14). We shall, hereafter, denote tisé ((4.36)
in the form .

B[a%,1] = | dr. G2, — G2, — . (4.37)

showing the atomic displacements in only one extended fiviendell and omitting
the argument in the variablesy; (t), ga(t).

Proceeding in a similar manner, we obtain bushes of NNMsHerdther three
groups listed in (4.33)

B[&*,al] = |0,q,0,—q, (4.38)
B[é47é2i] - ‘qlv —01,02, _q2|a (439)
B[é47é3ﬂ = q707 _an’a (440)

More generally, we conclude that for sufficiently large exted primitive cells
it will not be possible to find enough symmetry elements tcegige to NNMs,
since the bushes of the corresponding displacement paitieermulti-dimensional.
For this reason, there exists only a very specific number shési for any fixed
dimension beyond the (one-dimensional) NNMs!

4.4.2 Bushes in modal space and stability analysis

Recall now that our vectorX(t), giving rise to bushes of NNMs, are defined in
the configuration spadgN. If we now introduce in this space a basis set of vectors
{$1,02,...,¢n}, we can represent the dynamical regime of our mechanicedrsys
by a linear combination of the vectogs with time dependent coefficientg(t) as
follows
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N
X(t)= > vit)ej, (4.41)
=1

where the functionw;(t) entering this decomposition may be thought of as new
dynamical variables.

Let us observe that every term in the sum (4.41) has the foran\difIM, whose
basis vectorp; determines a displacement pattern, while the functigiig deter-
mine the time evolution of the atomic displacements. Beeafishis interpretation,
one can consider a given dynamical regiXig) as a bush of NNMs. In fact, we
may also speak abot modes andecondarynodes of a given bush (see below).

Note that each term;(t)¢; in the sum (4.41) imot, in general, a solution of the
dynamical equations of the considered mechanical systéte & specific linear
combination of a number of these modes can represent suchutéoscand thus
describe an exact dynamical regime.

We now write our Hamiltonian as the sum of a kinetic energyapdtential en-
ergyV (X) part, and assume the{X) can be decomposed into a Taylor series with
respect to the atomic displacement&) from their equilibrium positions and all
terms whose orders are higher than 2 are neglected. As & fdsuiton’s equations

ov

35" i=1,...,N) (4.42)

mdi =
are linear differential equations, with constant coefficients. As wscdssed in
Chap. 2, each normal mode is a particular solution to (4.#&)eoform

X(t) = ccoqwt + ¢o), (4.43)

where theN-dimensional constant vectoe= {c;,Cy, ..., cn } and the constant phase
@ are determined by the initial displacements of all parsiétem their equilibrium
state andv is the normal mode frequency.

SinceV (X) has a quadratic form, substituting (4.43) into (4.42) amiekting
coq wt + ¢o) from the resulting equations reduces the problem of findiegiormal
modes to the task of evaluating the eigenvalues and eigtmgeaf the matrixK
with coefficients
A

06190 |x_o’

Since the theN x N matrix K is real and symmetric, it possesdésigenvectors
cj (j=1,...,N) andN eigenvaluesujz. The complete collection of these vectors,
i.e. theN normal coordinates, can be used as the basis of our configusgtace,
hence we may write

kij i,j=1,...,N. (4.44)

N
X(t) = _;Mj (t)cj, (4.45)

whereX(t) = {ou(t),0(t),...,an(t)}, while i (t) are the new dynamical variables
that replace the old variablegt) (i=1,...,N).
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If the transformation to normal coordinates is used in theeabe of degenera-
cies, the corresponding system of linear ODEs leads to & secoupled harmonic
oscillators

f1j(t) + w?pi(t) =0, j=1,...,N,

with the well-known solution
uj(t) = ajcos(wjt + ¢oj) , (4.46)

whereaj and¢g; are arbitrary constants.

Note the distinction betweenrermal coordinaterepresented by the eigenvector
cj, and a normal mode, referring to the product of the vecitand the time-periodic
function g (t) = cos(wjt + o;).

Let us begin by considering individual NNMs, representingg-aimensional
bushes of the FP{B-Hamiltonian. To study bushes of NNMs in monoatomic chains,
we shall choose the complete set of normal coordingtes the basis of our config-
uration space. Here, we use the normal coordinates in thefoesented in [275]:

n:1,...7N}, k=0,...,N—1,

o= {% [sin (ankn) +cos<2%kn)} i

where the subscrifk refers to the mode and the subscriptefers to the specific
particle. The vectorgy, k=0,1,2,...,N — 1, form an orthonormal basis, in which
we can expand the set of atomic displaceme(its corresponding to a given bush
as follows

N-1
X(t) =3 wl(t)d« (4.48)
k=0

(see (4.41)). For example, one obtains in this way the fatigvexpressions for the

bushes Ba*,i] and Ba&* &%) (see (4.37) and (4.39))

Ba%i]: X(t) = { qu(t), qa(t), —u(t), —02(t) | qa(t), Ga(t), —Gu(t), —02(t) |... }
= HU)Pn/2+ V() Panya - (4.49)
B[&*,8%]: X(t) = [A(t)pn/2+ V(t)Pnya - (4.50)

From the complete basis (4.47) only the vectors

1
¢N/2 = —(_17 17_11 11_17 17_11 11_17 17_11 11"')7 (451)
VN
1
Ina=—~=(1,-1,-1,11-1-111-1-11,..), (4.52)
VN
¢3N/4 = %(_17_11 11 11_17_11 11 11_17_11 11 11"')7 (453)

contribute to the two-dimensional bushes (4.49), (4.50)ictv are equivalent to
each other and constitute examples of dynamical domaimshEdoush Ba*, 1], we
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find the following relations between the old variabtgét), g»(t) (corresponding to
the configuration space) and the new opés), v(t) (corresponding to the modal
space)
Kt = =¥ [aa(t) - Ga(t)],
A (4.54)
v(t) = =5 [aqu(t) + qa(t)].
Let us now return to the Hamiltonian of the FPU system writisriollows

z

N
Z On+1— Qn
= 1

NI =
=}

uMz
I\)Il—\
'OI~<

n

Herep =3, y = a for the FPUea chain, andp = 4, y = 8 for the FPUB chain,
while T andV are the kinetic and potential energies, respectively. \§aras again
periodic boundary conditions.

Let us consider the set of atomic displacements correspgnidi the two-
dimensional bush B4, ]

X)) ={ XY, =Y, —X| XY,=Y,—X| X,y,—=y,—X| ... }, (4.56)

where we renama; (t) andgz(t) from (4.49) a(t) andy(t), respectively. Substi-
tuting the particle displacements from (4.56) into the Hemian (4.55), choosing
in this case the FP chain, we obtain the kinetic and potential energies

T= g(x%yz), (4.57)

V=530 24 3) + e (0 oy ), (4.58)

These expressions are valid for an arbitrary F?dhain withN mod 4= 0. The
size of the extended primitive cell for the vibrational eté4.56) is equal to &
and, therefore, when calculating the ener@ieendV, we may restrict ourselves to
summing over only one such cell. In the present case, New/&piations become

. B 2 V) —
{x+(3x y)+a(3+2xy-y’) =0, (4.59)

Y4 (3y — X) + a(x? — 2xy— 3y?) =

Let us emphasize that these equations do not depend on tHeenNmof the parti-
cles in the chain, onllN mod 4= 0 must hold.

Equations (4.59) are written in terms of the particle disptaents(t) andy(t).
From them, it is easy to obtain the dynamical equations febilsh in terms of the
normal modegu(t) andv(t). Using the relations (4.54) between the old and new
variables, we find the following equations for the bugh8l] in the modal space

.. 4a
u+4u—ﬁv2:0, (4.60)
oy 89 (4.61)

v =0.
N
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Thus, the Hamiltonian for the bush[#8, 1], considered as a two-dimensional dy-
namical system, can be written in the modal space as follows

_ 4
N

The stability of bushes of modes was discussed, in genei20Q, 84, 85], while
in the case of the FPU chains it was considered in [88, 90]. As shown above,
the two-dimensional bush[&*, ] for the FPUa chain is described by (4.60) and
(4.61). These equations admit a special solution of the form

ut)#£0, v(t)=0. (4.63)

which can be excited by imposing the initial conditiopsto) = o # 0, (to) =
0, v(to) = 0, v(to) = 0. Substitution of (4.63) into (4.60) produces the dynainica
equation of the one-dimensional busaB] (see [90]) consisting of only one mode

p(t)

H[a* 1] = E(pz +V2) + (2u2+v?) uv2. (4.62)

2

fi+4u=0, (4.64)

with the simple solution

p(t) = pocog2t) (4.65)
taking (with no loss of generality) the initial phase to bei@do zero. Substituting
(4.65) into (4.61), we obtain

80 to

VN

which is easily transformed into the standard form of thehtat equation [6]

v+ |2— cog2t)|v=0, (4.66)
| |

V+[a—2qcoq2t)]v =0. (4.67)

As is well-known, there exist domains of stable and unstatagon of the Math-
ieu equation (4.67) in théa,q) plane of its parameters [6]. The one-dimensional
bush B&2,i] is stable for sufficiently small amplitudgs of the modeyu(t), but
becomes unstable wheg > 0 is increased . This phenomenon, similar to the well-
known parametric resonance, takes placgpatalues which lie within the domains
of unstable motion of Mathieu’s equation (4.66).

4.5 Applications to solid state physics

The dynamics of Hamiltonian systems is a broad field with eewahge of applica-
tions. Of course, in these lectures the emphasis is maialyepl on coupled oscil-
lators ofN dof that one encounters primarily in classical mechanicsvéver, with
regard td\—particle one-dimensional lattices, wheitbecomes arbitrarily large, itis
possible to examine certain very important issues of istacestatistical mechanics.
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Still, there are some basic questions concerning theseltéamin systems that may
be posed more generally. One such question addresses steneri and stability of
NNMs as natural states in certain problems of atomic or mbéewibrations.

4.5.1 Bushes of NNMs for a square molecule

Let us consider a square molecule represented by a mechsystam whose equi-
librium state is shown in Fig. 4.1. The four atoms of this ncole are shown as
filled circles at the vertices of the square, while the nundfezvery atom and its
(x,y) coordinates are also given in the figure.

Fig. 4.1 The model of a square molecule with one atom at each of itsverdices (after [66]).

If we suppose that the four atoms can oscillate about theiitibijum positions
only in the (x,y) plane, we immediately realize that this model can be desdrib
by a Hamiltonian system possessing eight dof. Furthernvegeyill not assume at
this stage any specific type of inter-particle interactj@osthat we may treat bushes
of NNMs of this system as purely geometrical objects. Thdldxium configura-
tions of our molecule possess a symmetry group denotegipipelow, according
to which, at equilibrium, the system is invariant under tiséam of the following
transformations
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(i) Rotations by the angles090°, 18C°, 270" about az axis orthogonal to the plane
of Fig. 4.1 passing through the center of the square. We déhese rotations by
01, U2, U3, 04, respectively.

(ii) Reflections across four mirror planes orthogonal to pteme of the molecule
containing thez axis and shown by bold lines in Fig. 4.1. Two of them are “co-
ordinate” planesds, g7) and the other two are “diagonal” planeg(gs).

The above symmetry elements can be explicitly defined asvisl|

gl(xay) = (Xay)v QZ(X,y) =(=¥,X), G(Xy)=(=X%-=Y), ga(x.y)=(¥,—X)

g5(X.y) = (=x¥), 9s(X.y) = (=¥,—X), gz(X,y) = (X, —Y), Ga(X,y) = (¥, (>2.68)
Thus, the symmetry group of the square moleddlg,contains 8 elements, .. .,Js,
determined by (4.68). This group is non-Abelian since,,&g: gs = gs, while
0s-02 = g7. According to Lagrange’s theorem, the order of any subgi®alivisor
of the order of the full group. Therefore, for the case of theugp G = Cy4, with the
orderm= 8, there exist only four subgrouf with order equal ton=1,2,4,8 as

follows
m=1: Glz{gl}zcl
m=2:Gy={01,03} =C2
Gz = {01,905} andGj = {01,097} = C¢
G4 = {01,906} andG) = {01,908} = Cg (4.69)
Mm=4: Gs={01,02,030} =Cs '

GG - {917937955 97} = Cgv
G7 - {917937965 98} = Cgv
m=8: Gg = {01,092,93,94,05,096,97,98} = Cav-

Let us suppose now that the equilibrium state of our moleisud¢able under arbi-
trary infinitesimal displacements of the atoms in tkgy) plane. Moreover, we will
also assume that this state is isolated in the sense thahwaifinite size neighbor-
hood around it there are no other equilibrium states.

Next, we shall consider planar vibrations, i.e. vibratiofishe molecule in the
plane of its equilibrium configuration. Let us excite a viiwaal regime of our
molecule by displacing the atoms from their equilibriumigoss in a specific man-
ner. As a result of such displacements, the initial confitjoineof the molecule will
have a well defined symmetry described by one of the subgrofughe groupGay,
listed in (4.69). Indeed, the first configuration in Fig. 4.BRhnatoms displaced ar-
bitrarily corresponds to the symmetry groGp = C;. In this figure, we depict by
arrows the atomic displacements and by thick lines the tiaguhstantaneous con-
figurations of the molecule.

Thus, all possible vibrational regimes of the square madéecan be classified ac-
cording to 8 subgroups of the gro®-= C,,. The different configurations of the vi-
brating molecule, as depicted in Fig. 4.2, are the followargarbitrary quadrangle
G1 =C4, Fig. 4.2(a), a rotating and pulsating squéke= C4, Fig. 4.2(b), a parallel-
ogramG; = Cy, Fig. 4.2(c), a rectanglés = C5,, Fig. 4.2(d), a trapezoi@s = C¢,
Fig. 4.2(e), a rhombu&; = C§,, Fig. 4.2(f), a deltoids, = CY, Fig. 4.2(g), or a
pulsating squar&g = Cyy, Fig. 4.2(h). All these configurations vary in size as time
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(@ (b)

(© (d)

(€) ()

(©) (h)

Fig. 4.2 Different vibrational regimes (bushes of NNMs) of the squaolecule (after [66]).

progresses, but thgpeof the corresponding quadrangle does not change. Observe
also that these different types of vibrational regimes efriiplecule are described
by different numbers of dof. Let us discuss this in more detai

Each of the eight types of vibrational regimes in Fig. 4.2esponds to a certain
bush of NNMs. For example, the dynamical regime represgtipulsating square
G = Cyy, Fig. 4.2(h), can be characterized by only one dof, whichbmarepresented
either by the edge of the square or the displacement of arcat@m from its equi-
librium position along the corresponding diagonal. Thushsa vibrational regime
is described by a one-dimensional bush consisting onlyes$ticalled “breathing”
NNM.
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On the other hand, the rhombus-like vibratién= Cgv, Fig. 4.2(f), and rectangle-
like vibration Gg = C5,,, Fig. 4.2(d), are characterized by two dof: The lengths
of the diagonals in the former case and the lengths of thecadfeedges in the
latter. Thus, both of these vibrational regimes are desdriny two-dimensional
bushes of modes. Similarly, one can check that a trapegpietibrationG = Cg,
Fig. 4.2(e), corresponds to a three-dimensional bush, #i®id-type vibration
G4 = CY, Fig. 4.2(g), to a four-dimensional bush and the vibratigthvarbitrary
quadrangleG; = Cy, Fig. 4.2(a), is represented by a five-dimensional bush -of vi
brational modes. Note, finally, that vibrations belonginghe Gs = C4 group of
Fig. 4.2(b) are described by a two-dimensional bush cangisif one rotating and
one pulsating mode.

Using a similar group-theoretical analysis as outlinedvabmne can study
bushes of NNMs for a 3-dimensional mechanical system ctingisf a molecule
with six atoms, whose interactions are described by andpatrpair-particle po-
tentialV(r) depending only on the distance between two particles. Ailibgum,
these particles form a regular octahedron with edges oflégpugth. In a Cartesian
system ofx,y,z coordinates, four particles of the octahedron lie in thg) plane
forming a square, while the other two particles are locatethez-axis, one above
and one below the square. For more details about the solotitms problem, we
refer the reader to [52].

Exercises

Exercise 4.1 Write the equations of motion & coupled harmonic oscillators un-
derfixedboundary conditions (4.2) as a system of ODEs whose rhs iessgd in
terms of a tridiagonal matri%. Using the eigenvectors and eigenvalues of this ma-
trix, perform a basis transformation that diagonalid@snd change to new variables
Qq, given by (4.3), where the eigenvaluesHq = wé provide theN normal mode
frequencies (4.5). Plot the frequency spectgg = 1,2,...,N as a function of

g. What can you say about the linear independence of thesednetes for general
values ofN? Can you findN for which they are linearly dependent? Hint: Consider
the cased + 1 is a prime or a (positive integer) power of 2.

Exercise 4.2 Repeat the analysis of Exercise 4.1 fércoupled harmonic oscil-
lators undemperiodic boundary conditions and derive expressions (4.6) and.(4.7)
Note that the matrixXS is not exactly tridiagonal in this case, as it contains non-
zero entries in it$S; y and Sy, elements. Still it can be diagonalized and and its
eigenvalues provide the normal mode frequenaigs the same manner. Now plot
these frequencies vgand comment on their commensurability (linear dependence)
properties.
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Problems

Problem 4.1.Consider an FPB chain with N=12 atoms and periodic bound-
ary conditions. Study the stability of all six NNMs listed kq. (4.18)—(4.22)
by straightforward integration of the nonlinear dynamiequations of the FP\5-
model for different values of their amplitudes. Check thase NNMs are stable for
small values of the initial amplitud&. Find maximal values of for which the dy-
namical regime corresponding to the considered NNM losestébility. Compare
your results with those presented in [90] in the form of ursed stability diagrams,
which can be used to analyse the stability of NNMs in the FPPthain with an
arbitrary number of atoms.

Problem 4.2.Consider the plane square molecule discussed in Sect, dbdse
atoms interact via the Lennard-Jones potential

u(r) = r—?z - rEG’ (4.70)
Note that in dimensionless variables you may take B = 1. Using a mathemat-
ical package like MAPLE or MATHEMATICA, find the potential ergy of this
molecule in the harmonic approximation and obtain all lmrermal modes, as well
as their frequencies by finding eigenvalues and eigenvectiothe matrix (4.44).
Show that the square equilibrium state turns out to be ulesteith respect to the
rhombus distortion (the eigenfrequency of the mode witmrhos symmetry turns
out to be an imaginary number!). Hint: additional infornaatican be found in Ap-
pendix B of [90], and in [89].

Problem 4.3.Place an additional atom to the center of the square molesfule
Sect. 4.5.1, whose interaction with other four atoms is idlesd by Lennard-Jones
potential with coefficient#\, B different from those used in Problem 4.2. Show that
one can choose such valuesfolndB for this potential so that the square config-
uration of the molecule becomes stable, as all normal madiéncies turn out to
be real. Hint: Consult Appendix B of [84], and [89].

Problem 4.4.Study the nonlinear dynamics of the molecule of Problem #.Bb
tegrating the corresponding dynamical equations, usingus linear normal co-
ordinate as initial displacements of the atoms at the edfjeguare. Decompose
the configuration vectoX(t) according to (4.41), witlpy being normal coordinates
of the square molecule. Check that only two normal coorémanter this decom-
position: the rhombus-like and square-like (all otherdinaormal coordinates do
not contribute). Thus, you have found one example of a twoeedisional bush. Can
you find in this way another example of a two-dimensional boiSNNMs? Hint:
Consult Appendix B of [84].






Chapter 5

FPU Recurrences and the Transition from Weak
to Strong Chaos

Abstract The present chapter starts with a historical introductmthe FPU one-
dimensional lattice as it was first integrated numericajlfrbrmi Pasta and Ulam in
the 1950s and describes the famous paradox of the FPU racas.d-irst we review
some of the more recent attempts to explain it based on tHemeannormal modes
(NNMs) representing continuations of the lowgst 1,2, 3, ... modes of the linear
problem, termedj-breathers by Flach and co-workers, due to their expordatia
calization in Fourier space. We then present an extensitimoapproach focusing
on certain low-dimensional, so-callegetori, in the neighbourhood of these NNMs,
which are also exponentially localized and can be congdlloy Poncaré-Linstedt
series. We demonstrate hapatori reconcileg-breathers with the “natural packets”
approach of Berchialla and co-workers. Finally, we use tié¢ IGnethod to deter-
mine the destabilization threshold @ftori and study the slow diffusion of chaotic
orbits associated with the breakdown of the FPU recurrences

5.1 The Fermi Pasta Ulam Problem

5.1.1 Historical remarks

In the history of Hamiltonian dynamics few discoveries haspired so many re-
searchers and motivated so many theoretical and numetichés as the one an-
nounced in 1955, by E. Fermi, J. Pasta and S. Ulam (FPU) [128, 45]. They
had the brilliant idea to use the computers available attitma at the Los Alamos
National Laboratory to integrate the ODEs of a chain of 3hia&l harmonic oscil-
lators, coupled to each other by cubic nearest neighboerdations, to investigate
how energy was shared by all particles, as soon as the nanfioiees were turned
on. To this end, they imposed fixed boundary conditions ahaédmumerically the
equations of motion

69
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Xk:(Xk+1—2Xk+Xk71)+a (Xk+1—Xk)2_(Xk—Xk,1)2:| ) k:].,...,?)l, (51)

with xg = X32 = 0, X = 32 = 0, wherex, = X«(t) represents each particle’s displace-
ment from equilibrium and dots denote differentiation witspect to time t. To their
great surprise, starting with the initial conditign= sin(g—g), corresponding to the
first (@ = 1) linear normal mode, they observed for small energies-(0.25) a re-
markablenear-recurrenceof the solutions of (5.1) to this initial condition after a
relatively short time period (see Fig. 5.1 below).

Fig. 5.1 The FPU experi- 008 ;
ment: Time-integration of the 1 :
FPU system until just after the ooty 2

first approximate recurrence
of the initial state. Shown
here is how the energy, =

3 (aﬁ +2agsin? (2(311)))

is divided over the

first five modesag = L !

0.03

. 4
z,’:‘:pq(sm(,{,‘iﬁ) . The num-
0.02

bers in the figure indicate the 5
wave-number (after [54]). I - ¢
The figure is a reproduction 5%
of Fig. 1 of [124].
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~
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This was amazing! Equilibrium statistical mechanics pectstl that all higher
modes of oscillation would also be excited and eventuallyadly share the energy
of the system, achieving a state of thermodynamic equilibrilnstead, FPU ob-
served that a very small set of modes participated in the rdicgand the system
practically returned to its initial state after relativalyort time periods. It is, there-
fore, no wonder that this so-called “FPU paradox” createckatgexcitement within
the scientific community and generated a number of questibich remained open
for many years: Could it be, for example, that low energy remces are due to the
fact that (5.1) is close to an integrable system? Is it pestgzause this type of
nonlinearity is not sufficient for energy equipartition?wioan this “energy local-
ization” be explained? A new era of complex phenomena in Haman dynamics
was in the making.

In 1965, attempting to explain the results of FPU, Zabusky ruskal [355]
derived the Korteweg-de Vries (KdV) partial differentigjuation of shallow water
waves in the long wavelength and small amplitude approxonat

Ut + Ul+ 02U = 0 32 < 1, (5.2)

as a continuum limit of the FPU system (5.1). They observatgulitary traveling
wave solutions, now known awlitons exist, whose interaction properties result in
analogous recurrences of initial states (Fig. 5.2). Thesaelts, of course, led to the
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birth of a new field in applied mathematics dealing with thiegmability of evolution
equations and their solvability by the theory of Inversettéecag Transforms [2, 3].

Fig. 5.2 The evolution of the 3
initial stateu = cos(7x) in the
Korteweg-de Vries equation, 25r

at the timeg = 0O (dotted ling

t = 1/m (dashed ling At an
intermediate stage & 3.6/,
solid ling), the solitons are
maximally separated, while at
t ~ 30.4/m the initial state is
nearly recovered (after [54]).
The figure is a reproduction
of Fig. 1 of [355].

In taking the continuum limit, however, Zabusky and Kruskatrlooked an im-
portant aspect of the FPU problem, which is thiscretenessf the particle chain.
What happens often in discrete systems is that resonantgsdreneighbouring
oscillators can be avoided if their vibration frequenciesdutside the so-called
phonon bandepresenting the frequency spectrum of the linear probldms.leads
to the occurrence of localized oscillations calldidcrete breatherswhich cer-
tainly prevent equipartition of energy among all partiatéghe chain. Thus, one
might conjecture that FPU recurrences are also the reslithidéd energy transport
caused by discreteness and non-resonance effects. Thisyéig is an oversimpli-
fied way to view the FPU paradox.

The reason is that discrete breathers, of whom we shall héntenaore to say
in Chap. 6, are localized in configuration space and hena#dviethe oscillations
of few particles, while the initial state of the FPU experithivolves all particles
forming a single Fourier mode of the corresponding lineairchThus, we should
be looking instead at localization in Fourgmodal space, as the FPU recurrences
were observed after all when all the energy was placed i thd mode!

5.1.2 The concept af-breathers

This crucial fact was emphasized by Flach and his co-woifd&s, 132], who in-
troduced the concept ofbreathersas exact periodic solutions of the problem and
pointed out the role of their (linear) stability on the dyriasnof FPU systems. In
fact, they considered besides the FPd version of (5.1) the FPUY3 version as
well, described by the Hamiltonian
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H—}Ny2+}N(X - )2+EN(X ~x)*=E (5.3)
_zkglk Zk; k1 — Xk 4k;) k1 —Xk) = :

wherex, again is thekth particle’s displacement from equilibriury is its canon-
ically conjugate momentum and fixed boundary conditionsraposed by setting
Xo = Xn+1 = 0. A g-breather is defined as the continuation, ot 0 in (5.3) (or
o # 0in (5.1)) of the simple harmonic motion exhibited by tite mode in the un-
coupled cased = B = 0) and refers to the oscillation of all particles with a sang|
frequency nearly equal to the frequency of title linear mode. It is, therefore, ex-
actly what we have called NNM in Chap. 4. For a recent and cefrgnisive review
of these developments see [129].

Clearly, therefore, an important clue to the FPU paradossioall coupling pa-
rameters lies in the observation that, if we excite a single d-breather mode
(q=1,2,3,...), the total energy remains localized in practice only withi few
of these modes, at least as long as the initially excited nwosdble. Furthermore,
if we follow numerically FPU trajectories with initial coitébns close to such a
NNM, we find that they exhibit nearly the same localizationfpje as the NNM,
at least for very long time intervals. Thus, NNMs surfaceiag@a our studies as
g-breathers offering new insight in understanding the mobbf deviations from
energy equipartition among all modes, due to FPU recurgence

Analytical estimates of various scaling laws concerniplgreathers were also
obtained via the perturbation method of Poincaré-Lirtssedies in [132], which
we shall describe in detail later in this chapter. Using thiethod, the authors of
[132] expanded the solutions for all canonical variablesauiine lowest non-trivial
order with respect to the small parameters and derived tweoitant results: (a) An
asymptotic formula for the energy threshold of the first degization of the low
g-breathers of the FPUp chain (5.3)

na

Ecnn ————
©T BB(N+1)

(5.4)

valid for largeN, and (b) an exponentially decaying function for the average
monic energy of theth mode E(q) O exp(—bq), whereb depends on the system’s
parameterd\ and the total energlf. Remarkably enough, thegebreather energy
profilesg(q) are very similar to those of “FPU trajectories”, i.e. sabuis generated

by exciting initially one or a few long modes (as in the original FPU experiments),
whose exponential localization mrspace had already been noted earlier by other
authors [143, 142, 231, 113].

Based on this similarity, we may therefore conjecture thetd is a close connec-
tion betweerg-breathers and the energy localization properties of FBjddtories.
This sounds as if we are on the right track, yet two intrigujagstions arise: What
is the precise nature of this connection and why do FPU renass persist at pa-
rameter values for which the correspondagigreather solution becomesstablé®
In this chapter, we shall try to answer these questions.
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An important observation made in [39] turns out to be quilevant: Even if
one starts by exciting one logrmode with large enough energy, one observes, long
before equipartition, the formation afetastable statesoined “natural packets”, in
which the energy undergoes first a kind of equipartition agnarsubset of (low-
frequency) modes, as if only a fraction of the spectrum wamlly excited. These
packets appear quite clearly in the FPW model, where the set of participating
modes exhibits a “plateau” in the energy spectrum. In the FBUWnodel on the
other hand, although no clear plateaus are observed, th&réowency part of the
spectrum contains most of the energy given initially to thstem, in a way that
allows us to define an effective packet width. In fact one suextket consisting of
five modes is exactly what FPU observed in their original expent (see Fig. 5.1).
We may thus conclude that FPU trajectories are charactebiy@ kind ofmetasta-
bility resulting from all types of initial excitations of the lonefyuency part of the
spectrum [34].

5.1.3 The concept ad-tori

Let us now think ofg-breathers (or NNMs) as tori of dimension one, forming a
“backbone” in phase space that describes the motion of thealanode variables.
The following question naturally arises: Since we are aeglvith N dof Hamil-
tonian systems, why not consider also the relevance of t@my dimension lower
thanN? In particular, do such tori exist, and if so, do they exhsbitilar localization
properties as thg-breathers?

As we explain in this chapter, a more complete interpretatid the “para-
dox” of FPU recurrences can be put forth, by introducing tbecept ofg-tori,
which reconcileg)-breathers and their energy localization properties, #ighoc-
currence of metastable packets of low-frequency modes.chgeee this deeper
level of understanding of lack of equipartition, we need émeralize the results
obtained in [115, 38] for FPU trajectories, observing tieg packet of modes ex-
cited in these experiments corresponds to spectral nurshés$ying the condition
(N+1)/64<qg<5(N+1)/64, withN equal to a power of two minus one.

We shall thus consider classes of special solutions lyingamdy on one-
dimensional tori (as is the case withbreathers), but also on tori @ny low di-
mension s« N, i.e. solutions wittsindependent frequencies, representing the con-
tinuation of motions resulting from excitirggmodes of the uncoupled case, whsre
is allowed to vary proportionally tdl. In what follows, we shall focus on exploring
the properties of suctytori solutions, both analytically and numerically. In partic-
ular, we shall establish energy localization laws analesgouhose foig-breathers,
using the Poincaré-Linstedt perturbative method. We théin demonstrate by nu-
merical experiments that these laws describe accuratelprbperties not only of
exactg-tori solutions, but also of FPU trajectories with nearbigiah conditions.

Theg-tori approach has been described in detail in a recentqatioin [97], so
we will only briefly sketch it here. Note that our aim in studgi-tori is to establish
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the existence of exact invariant manifolds of lower dimensn the FPU problem.
A similar approach can be found in the work of Giorgilli and Mo [152], who
also explored FPU trajectories confined in lower-dimensiomanifolds of the RI-
dimensional FPU phase space. They proved that this confimgmaesists for times
exponentially long in the inverse of the specific energy @ slystem)e = E/N,
in the spirit of the famous Nekhoroshev theory [259, 33]. datf the theory of
Nekhoroshev offers a natural framework for studying anedyy the metastability
scenario.

In [97], it was shown that use of the Poincaré-Linstedt médtleads to accurate
scaling laws for the energy profilé(q) of a trajectory lying exactly on g-torus,
while the consistency of the Poincaré-Linstedt consionabn a Cantor set of per-
turbed frequencies (or amplitudes) was explicitly dem@tstl. Numerically, one
finds that energy localization persists for long times atsotfajectories near g-
torus, even beyond the energy threshold whereyttarus itself becomes unstable.
Of course, the determination of linear stability foradimensional torus{> 1) is a
subtle question, since no straightforward applicationlojket theory is available,
as in thes= 1 case. Nevertheless, as shown in [97], one can employ tHeochef
GALI (see Chap. 3) to approximately determine critical paeter values at which a
low-dimensional torus turns unstable, in the sense thatisdrbits immediate vicin-
ity begin to display chaotic behavior.

Thus, in the next sections we briefly describe analyticalranderical results on
the existence, stability and scaling lawsapfori, using the FPUY-3 model as an
example. We focus on the subseiggtiori corresponding to zeroth order excitations
of a set of adjacent modeg;, i = 1,...,s, whose energy profilg(q) can be evalu-
ated analytically and examine the energy localization dfl FRjectories when the
linear stability of a nearbyg-torus is lost. Finally, we address the question of the
breakdown of FPU recurrences and the onset of equipartitioonnection with the
slow diffusion of orbits starting in the vicinity of unsta-tori.

5.2 Existence and Stability ofg-tori

Let us begin our study of the FRLB system (5.3) introducing normal mode canon-
ical variablesQq, Py through the (linear) set of canonical transformations (a&e
discussion in Sects. 4.1 and 4.2)

2 N [ gk 2 N/ gk
Xk_\/N—Jrququsm(N——H.>’ Y= N—Hqu’qS'”(N—H)- (5:5)

Direct substitution of (5.5) into (5.3) allows us to writestRlamiltonian in the form
H = Hy+ Hyg, in which the quadratic part represehtsincoupled harmonic oscilla-
tors

z

1
Ho=2'Y (PE+0Q5Q7) (5.6)
24
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with (linear) normal mode frequencies

. qrr
Qu=2 —— 1<g<N 5.7
q S|n<2(N+1)>a _q_ ) ( )
and the quartic part is as given in (4.9). Note that in thispthig in contrast with
Chap. 4, we shall denote harmonic frequencies by the sy@banhd usew for the
perturbed frequencies in the context of the Poincarétkdtsapproach described
below. Thus, we write our equations of motion in the new cécadivariables as

. B N
Qq + .Qng = —m I’mzr]:lcq,l,m,n-Qq-QI Qm2n QI QmQhn (58)

(see (4.11)), using for the non-zero values of the coeffisi€qy mn the expressions
given in (4.10). As we have already explained in Sect. 42 jtlividual harmonic
energiesg = (P§ + QgQg)/Z, which are constants of the motion f®e= 0, become
functions of time for3 # 0 and only the total enerdy of the system is conserved. It
is, therefore, useful to define a specific energy asE /N and an average harmonic
energy of each mode over a time intervat® < T by Eq(T) = %jg Eq(t)dt.

In classical FPU experiments, one starts with the totalgnshared only by a
small subset of modes. Thus, for short time interdglsve haveEq(T) ~ O for alll
g corresponding to non-excited modes. Equipartition, tleeeg means that (due to
nonlinearity) the energy will eventually be shared equbihall modes, i.e.

lim Eq(T)=€¢ ,9=1,...,N (5.9

T—o
Classical ergodic theory predicts that (5.9) will be viethonly for orbits resulting
from a zero measure set of initial conditions. The FPU “parégdon the other hand,
owes its name to the crucial observation that large deviatiom the approximate
equality Eq(T) ~ & occur for many other orbits as well. Depending on the initial
conditions, these deviations, termed FPU recurrencesgareto persist even when
T becomes very large.

5.2.1 Construction ofy-tori by Poincat-Linstedt series

We now introduce the main elements of the methodjtdrus construction pre-
sented in [97], using an explicitly solved example fdr= 8, whose solutions
lie on a two-dimensional torus representing the contirumatfor 8 # 0, of the
quasi-periodic solution of the uncouple € 0) systemQy(t) = Aj cosQit, Qx =
A, cosQst, for a suitable choice of; andAs.

To this end, we follow the Poincaré-Linstedt method andklimo solutionsQq(t),
g=1,...,8, expanded as series of powers of the (small) pararaetef /2(N+ 1),
namely
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Qut) = QY (1) +0Q (1) + 02 QP () +.... q=1,...8 . (5.10)

For the motion to be quasiperiodic on a 2-torus, the funs@ﬁt}) (t) must, at any or-
derr, be trigonometric polynomials involving only two frequées (and their mul-
tiples). Furthermore, in a continuation of the unperturbelditionsQ; andQ, the

new frequenciegy andw;, of the perturbed system must represent small corrections
of the linear normal mode frequenci€s, Q.. According to the Poincaré-Linstedt
method, these new frequencies are also given by series iarp@fo, as

wy=Qq+ow’ +0%?+... q=12. (5.11)

As is well-known, the above corrections are determined byr#yuirement that alll
terms in the differential equations of motion, giving rigesecular terms (of the
formtsinwyt etc.) in the solutionQq(t), be eliminated.

Let us consider the equation of motion for the first mode, \eHost few terms
on the right side are

01+ Q2Q; = —0(3Q{Q3 + 6020201 Q3 + 323 Q23Q%2Q3 + ..). (5.12)

Proceeding with the Poincaré-Linstedt series, the frequé; is substituted on
the left side of (5.12) by its equivalent expression obtdibg squaring (5.11) and
solving forle. Up to first order ino this gives

Q2= w2000 + ... (5.13)

Substituting the expansions (5.10) into (5.12), as welhasftequency expansion
(5.13) into the left hand side (Ihs) of (5.12), and groupiogether terms of like

orders, we find at zeroth ordé‘lo) + wle(lo) =0, while at first order

O + Q) = 2010V QY - 301(QY ) - 62702501 Q)2 -
~30305(Q")2QP + ... (5.14)

Repeating the above process for modes 2 and 3, we find thatzéneith order
equations also take the harmonic oscillator form

QY +wiQY) =0, QY +03QY =0 . (5.15)

Note that the corrected frequenci®s w, appear in the zeroth order equations for
the modes 1 and 2, while the uncorrected frequeadgpppears in the zeroth order
equation of mode 3 (similarhQy, ..., Qg, appear in the zeroth order equations of
modes 4 to 8). Thus to construct a solution which lies on ar@stowve start from
particular solutions of (5.15) (with zero velocitiestat 0) which read

Q\”(t) = Arcosart, QP (t) = Azcosint, QY (t) = AzcosQt,
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where the amplituded,, Ay, Az are arbitrary. If the solution is to lie on a 2-torus
with frequenciesv, w,, we must sef\3 = 0, so that no third frequency is introduced

in the solutions. In the same way, the zeroth order equa(ﬁé‘ﬁslr Q&Qg(’) =0 for
the remaining modes=4,...,8, yield solutionsQéo) (t) = AgcosQqt for which we
requireAy = As = ... = Ag = 0. We are, therefore, left with only two non-zero free
amplitudesAy, A;.

Now, consider (5.14) for the first order ter@ﬁl) (t). Only zeroth order terms

Q&O) (t) appear on its right hand side (rhs), allowing for the solutio be found
recursively. The crucial remark here is that the cholge= ... = Ag = 0, also

yields Qéo)(t) =..= Qéo) (t) = 0, whence only a small subset of the terms ap-
pearing in the original equations of motion survive on thghtiside of (5.14),

namely those in which none of the functio@&o) (t),... ,Qéo) (t), appears. As a re-
sult, (5.14) is dramatically simplified and upon substimtbe(lO) (t) = Agcoswnt,
Q<2°) (t) = Apcoswpt, reduces to

O + QY = 201w A cosint — 3Q1A3 cos} art —
— 6Q2Q32A1A3coswt coS wyt (5.16)

This can now be used to fiaoil> so that no secular terms appear in the solution,
yielding
9 3
W = SAQ]+ SRS,
while, after some simple operations, we find

3A30Q7cosamt  3A1A30Q202 cog wy + 2up)t
320f 2[(en + 2,)% — 7]
3A1A2Q20Q2 coq wy — 2wp)t
2[(on — 260)? — w?]

Q) = +

(5.17)

By the same analysis, we find the frequency correction of¢lcersd mode to be

9 3
W = §A§Q§+ EA%leQz,

and obtain the solution

_ 3A3Q7cos3upt | 3ATA Q70 cos 2w + w)t
3205 2201 + wp)? — W]

3A2A0Q20Q2coq 2wy — wy)t
2[(20n — wp)? — ]

+

, (5.18)

which has a similar structure as the first order solution effitst mode. For the
third order term there is no frequency correction, and we find
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1) A3Q3Q; (3cost  cos3ut
Q3 (t) = 4 2 QZ 9 2 2
wi— Q3 9w —QF
N 3A1AZQ10203 < cog wy — 2up)t cofwy +2mp)t  2coswyt )
4 (@1 —20)2 - 0QF (W +2wp)2—0QF  wf-0QF)

(5.19)

We may thus proceed to the sixth mode to find solutions in whltthe functions

ng),...,Qg)), are equal to zero, while the functio@l),...,QéD, are non zero.
However, a new situation appears when we arrive at the dewasrt eighth modes.

A careful inspection of the equation for the te@él) (t),i.e.

8
P+ 2QP =~ T Cum@2m2QOA0QY,  (5.20)

I, mn=1

shows that there can be no term on the rhs which does not mgoiwme of the func-
tionsQ(So), ... ,Qg)). Again, this follows from the selection rules for the coaéits
in (4.10). Since all these functions are equal to zero, tlseof(5.20) is equal to

zero. Taking this into account, we ﬁ@l) (t) =0, so as not to introduce a third
frequencyQ; in the solutions, whence the series expansion (5.10pfdt) neces-
sarily starts with terms of order at leagtg?). The same holds true for the equation
determiningQél) (t).

Let us now make a number of important remarks regarding tbegeabonstruc-
tion:

i) ConsistencyThe solutions (5.17)—(5.19) (and those of subsequentgrdee
meaningful only when the frequencies appearing in the dématiors aréencommen-
surable so that denominators do not vanish. Note that the spectfumanrrected
frequencieg2q, given by (5.7), is fully incommensurable if: (¥ is a prime number
minus one, or (i) a power of two minus one (see Problem 5.1[h6@).

Thus, it is possible to deduce that no commensurabilitieséden the unper-
turbed frequencie€q can ever show up in the above series, as a zero divisor. For
a more detailed analysis of the consistency of the Poircerstedt method as ap-
plied to the FPUB-model (5.3) we refer the reader to [97]. In fact, the proof of
consistency can be generalized to constesdimensionalg-tori, according to the
nonlinear continuation of the set of linear modgs = 1,...,s, permitted by Lya-
punov’s theorem [235]. For example, if the fisshodes are excited with amplitudes
A, k=1,...,s, the formula for the perturbed frequencies reads

30 S 3
wy = Qg+ = Y AQR - gAg:zq%r O(0%A,....As), (5.21)
k=1

for g=1,...,s Fixing the frequenciesy in advance implies that (5.21) should
be regarded as yielding the (unknown) amplitudgg$or which the quasi-periodic
solution exhibits the chosen set of frequencies. The sasé, of course, implies
that the same property holds for the Poincaré-Linstedesmtation ofj-breathers
described in [132].
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if) ConvergenceEven after establishing consistency, one still has to @omn-
vergence of the series. However, as demonstrated in [133144], the question of
convergence of the Poincaré-Linstedt series is notayalificult even for simple
Hamiltonian systems. This is because the above series liiis@n invariant tori
are convergent, butot absolutelyas explained in [153]. Indeed, the problem of
a suitable Kolmogorov construction of lower-dimensioral yielding absolutely
convergent series is still open (see e.g. [151]).
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Fig. 5.3 Comparison of numerical (points) versus analytical (sgliy curve) solutions, using
the Poincaré-Linstedt series up to ordefa?), for the time evolution of the modes (@)= 1, (b)
g=3,(c)q=7,whenA; =1,A, =0.5, andN =8, 3 = 0.1. (d) The indicesGALI, to GALIls up
to a timet = 10° clearly indicate that the motion lies on a 2-dimensionalsaafter [97]).

Thus, in [97] the construction ad-tori is justified by numerical simulations,
taking initial conditions from the analytical expressiddsl0) att = 0 and using
the GALI method to demonstrate that the computed orbitsriéwm-dimensional
tori. The numerical evaluation of the mod€s(t), Qs(t) and Q(t) follows re-
markably well the analytical solution provided by the Pair&Linstedt series trun-
cated to second order i, for N = 8, 3 = 0.1, andA; = 1, A, = 0.5, as shown
in Figs. 5.3(a)—(c). The size of the error is as expected bytiimcation order in
(5.10), while the GALI method shows, in Fig. 5.3(d), that thenerical orbit lies
on a 2-torus.

Let us recall that the indicators GALIk = 2,3,..., decay exponentially for
chaotic orbits, due to the attraction of all deviation vestby the most unstable
direction corresponding to the MLE. On the other hand, if dritdies on a stable
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s-dimensional torus, the indices GALL .., GALI oscillate about aon-zerovalue,
while the GALL.j, j = 1,2,... decay asymptotically by a power law. This is pre-
cisely what we observe in Fig. 5.3(d). Namely, after anahiiansient interval, the
GALI; index stabilizes at a constant value GAlzt 0.1, while all higher indices,
starting with GALK, decay following power laws expected by the theory. Thus, we
conclude that the motion lies on a 2-torus, exactly as ptediby the Poincaré-
Linstedt construction, despite the fact that some exoitatias provided initially to

all modes.

(i) Presence and accumulation of small divisdEsen though zero denomina-
tors do not occur, we cannot avoid the notorious problesnadll divisorsappear-
ing in terms of all orders beyond the zeroth. Since the lovdenfbequencies satisfy
wy ~ /N, divisors like w?, or (w — 2w,)? + w? (appearing e.g. in (5.17)) are
small and care must be taken regarding their effect on thetprof terms of the
series at successive orders. For example, one of the mosttampsuchearly res-
onantdivisors is @v? — Q2 in (5.19). However, since the first order corrections of
the frequenciesu; and w, are ﬁ(BAJZ/N“), for Aj, B sufficiently small, one may
still use for all these frequencies the approximation gibgrihe first two terms in
the sinus expansion of (5.7) namely

.. m g
WOENTD 24N LR (5-22)

the error beingZ (AZB/N*) for wi, wp, and &((q/N)?) for all other frequencies.
This implies that a divisor Iikeé;ial2 — Q§ can be approximated by the relation

2.2 A2 _ _ . am ”3(q3—Q)N"4q4 Q_6

Defining the quantity
_ g

ag = 1oNE (5.23)

we conclude that a divisor of ordeg appears in (5.19), which is the solution of an
equation of the first order in the recursive scheme. In génia@aterms produced

at consecutive orders involve products of the f@gyag, - - - a4, in the denominators

of the terms produced at thiéh order of the recursive scheme. Consequently, this
type of accumulation of small divisors does not lead to ardjgat series, but can
be exploited instead to obtain estimates of the profile ofggnmcalization for the
g-tori solutions, as we shall explain in the next section.

Figure 5.4 presents one more example showing the compdrétareen our ana-
lytical and numerical results for the mod®s(t), Qs(t), andQ13(t), along a 4-torus
solution constructed precisely as described above, Nith 16, 8 = 0.1, by ex-
citing modes 1-4 at zeroth order, via the amplitudes= 1, A, = 0.5, A3 = 1/3,

A4 = 0.25. In this case, we find that the modes excited at the firstr @fdbe recur-
sive scheme arg=5toq = 12, while the modes excited at second orderptel3



5.2 Existence and Stability @ftori 81

0.02

(b)

0.01

1 Q) 000t

-0.01

-0.02
0

5.0x10°

Q) oo}

—— GALI(2)
————— GALI(3)
[ GALI(4)
--—- GALI(5)
- GALI(6)

-5.0x10° |-

-1.Ox1060 L L v L 10°

Fig. 5.4 Same as in Fig. 5.3, showing the existence of a 4-torus inygters withN = 16,3 = 0.1,
whenA; =1,A; =0.5,A3 =0.333.. ., Ay = 0.25. The time evolutioQq(t) is shown for the modes
(@)g=1, (b)g=5, (c)g=13. (d) TheGALIy, k= 2,3,4 indices are again seen to stabilize after
t ~ 10*, while fork > 5 they continue to decrease by power laws (after [97]).

to g = 16. Thus, according to the GALI method the motion lies on ard, since
GALIs is the first index to fall asymptotically as?® (see Fig. 5.4(d)).

The sequence of excitation of different modes, whose aug@i at theth order
have a pre-factar’ = (8/2(N+1))", plays a crucial role in estimating the profile of
energy localization. However, the contribution of smallisors to such a pre-factor
must also be examined.

5.2.2 Profile of the energy localization

Let us see what happens in the case of the solutions showm# 5i3 and 5.4.
Figure 5.5 shows the average harmonic energy of each modadwvee sparm =
10° in the cases of the-torus of Fig. 5.3 and Fig. 5.4, shown in Fig. 5.5(a) and
Fig. 5.5(b) respectively. The numerical result (open esglcompares excellently
with the analytical result (stars) obtained via the Poigdanstedt method. The
filled circles in each plot represent “piecewise” estimatkthe localization profile
in groups of modes excited at consecutive orders of the saaischeme.

The derivation and exact meaning of these theoretical agtisnwill be analyzed
in detail below. Here we point out their main feature shovwarear-cut separation
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of the modes into groups following essentially the sequefiexcitations predicted
by the Poincaré-Linstedt series construction . Namelfidn 5.5(a) we see clearly
that the decrease of the average en&gwlong the profile occurs by abrupt steps,
with three groups formed by nearby energies, namely theggobmodes 1, 2, then
3to 6, and then 7, 8. The same phenomenon is also seen in 5{g),5vhere the
grouping of the different modes follows precisely the sempgeof excitations 1 to 4,
5t0 12, 13 to 16 as predicted by the theory.

10° T T T T T T T T 10 T T Py F— ®)
8Particles (3 6 Particles
107 B=01H=012 10° b p=0.1H=0.12
10" | 1 10° | 1
E 10" 4 E 1071 4
10° | 1 10° | 1
107 q 10" q
10" F 4 10k 4
10 TR S T SR S S S 10 L L L L L L L L
o 1 2 3 4.5 6 7 8 9 0 2 4 & 8,10 12 14 16

Fig. 5.5 The average harmonic energy of theqth mode as a function af, after a time = 1P for

(a) the 2-torus and (b) 4-torus solutions (open circlesjesponding to the initial conditions used
in Figs. 5.3 and 5.4 respectively. The starsiy@alues calculated via the analytical representation
of the solutiongy(t) by the Poincaré-Linstedt series. The filled circles shoheatetical estimate
based on the average energy of suitably defined groups ofsiisele (5.27) and relevant discussion
in the text) (after [97]).

The above analysis suggests that, starting with initiatidtons neang-breathers,
a “backbone” is formed in phase space by a hierarchical ssbhftions which
are, precisely, the solutions lying on low-dimensiongari (of dimensions =
1,2,..., s< N). This also means that all FPU trajectories with initial ditions
within this set exhibit a profile of energy localization cheterized by a “stepwise”
exponential decay, with step size equal ® Rloreover, if we denote bA® the
mean value of all the norm{Q, [, we obtain the following estimate:

(g _ (CoAZ

R (5.24)

whereAy = A9 is the mean amplitude of the oscillations of all modes excite
the zeroth order of the perturbation theory, &i$ a constant of ordef’(1) [97].

In fact, (5.24) is a straightforward generalization of tlséireate given in [132] for
g-breathers, while the two estimates become identical (exfoe the value o) if
one sets =1 in (5.24), andyy = 1 in Flach’sg-breathers formulae. Thus, all the
modesq in this group share a nearly equal mean amplitude of osoiliatgiven
by the estimate of (5.24).
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Using (5.24), it is possible to derive ‘piecewise’ estinsadé the energy of each
group using a formula for the average harmonic eneigi€sof the modeg¥. To
achieve this, note that the total energygiven to the system can be estimated as
the sum of the energies of the modes. 1, s (the remaining modes yield only small
corrections to the total energy), i.e.

PSA2

2 a2
E swqm)Ao N 1?2

On the other hand, the energy of each mqtfecan be estimated from

E(k) 1 5 < B )Zk (A(k))z N 7T232(C$)2k 4k+2

~Z0 P
2 q® 2(N+1) 22k+l(N+1)2k+2’

which, in terms of the total enerdy, yields

E (cZBZ(N + 1)252> k.

Kk =
E —pe

< (5.25)

Once again, the similarity of (5.25) with the correspondiqgation forg-breathers
[132] ;
9B%(N 4 1)%E?
E 2410 ~ Eq (— (5.26)
(2k+1)do o 64714(13

is evident, where is the unique mode excited at zeroth order of the perturbatio
theory. Note, in particular, that the integein (5.25) plays a role similar to that of
do in (5.26). This means that the energy profile af-areather withqg = s obeys
the same exponential law as the energy profile ostenensionat-torus. But the
most important feature of the latter solutions is that tipeafile remains unaltered
asN increases, provided that: (i) a constant fractdn= s/N of the spectrum is
initially excited, (i.e. thasincreases proportionally f8), and (ii) the specific energy

€ = E/N remains constant. Indeed, in terms of the specific ener@§.25) takes

the form .
C2p2¢2
gk & £ 5.27
M\ e ) 5-27)
i.e. the profile becomesdependenodf N. A similar behavior is observed witty
breather solutions provided that the “seed” mggdevaries linearly withN, as was
shown explicitly in [133, 182].
The samaj-torus construction can be performed for the FRiUmodel as well.
Here we only discuss the main results regarding the expi@hémtalization ofg-
torus solutions, whose profile is quite similar to the onesgiin (5.27).
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5.3 A Numerical Study of FPU trajectories

Examples of the “stepwise” profiles predicted by (5.25) md¢hse of exaej-tori so-
lutions are shown by filled circles in Fig. 5.5, correspotgdimthe solutions shown
in Figs. 5.3 and 5.4 (in all fittings we s€t= 1 for simplicity). From these we see
that the theoretical “piecewise” profiles yield nearly tlaen®e average exponential
slope as the profiles obtained numerically, or analytidajlyhe construction of the
solutions via the Poincaré-Linstedt method . Thus, thinesés (5.25), or (5.27),
appear quite satisfactory for characterizing the loctibraprofiles of exacy-tori
solutions.

The key question now, regarding the relevance ofdkeri solutions for the
interpretation of the FPU paradox, is whether (5.25) or{br2tain their predictive
power in the case of generic FPU trajectories which, by defimiare started close
to but not exactly on g-torus.

To answer this question, let us examine the results plottddgs. 5.6 and 5.7.
Figure 5.6 shows the energy localization profile in numérsgeriments on the
FPU-B model in whichf is kept fixed 8 = 0.3), while N takes the valuebl =
64, N = 128 andN = 256. Although the derivation of explicg-tori solutions is
practically feasible by computer algebra only up to a ratimeall value ofN (N =
16), in the present section we numerically follow trajei@sifor much larger values
of N.

In all six panels of Fig. 5.6 the FPU trajectories are comgstarting with initial
conditions in which only the= 4 (forN = 64),s= 8 (forN = 128) ands = 16 (for
N = 256) modes are excitedtat 0, with the excitation amplitudes corresponding to
the total energ¥ indicated in each panel, and constant specific energyt.5625x
10-%in the top row and = 1.5625x 10~°in the bottom row of Fig. 5.6.

The resulting trajectories differ fromptori solutions in the following sense: For
theg-tori all modes have an initial excitation whose size was estimatésl 24) or
(5.25), while in the case of the FPU trajectories only $tfegst modes are excited
initially, and one ha€)q(0) = 0 for all modesq > s. Furthermore, since in the g-
tori solutions one also hafQq-s(t)|| < ||Qq<s(t)| for all t, the FPU trajectories
can be considered as lying in the neighbourhood @fterus, at least initially. The
numerical results suggest thatkfis small, FPU trajectories remain close to the
g-tori even after relatively long times, eig= 10°.

This is depicted in Fig. 5.6, in which one sees that the aweengrgy profiles of
the FPU trajectories (at= 10°) exhibit the same behavior as predicted by (5.25),
for an exactg-torus solution with the same total energy as the FPU trajgdh
each panel. For example, based on the values of their aveaaigmnic energy, the
modes in Fig. 5.6(a) (in whick= 4) are clearly separated in groups, 1 to 4, 5t0 12,
13 to 20, etc., as foreseen for an exact 4-torus solution.efleegies of the modes
in each group have a sigmoid variation around a level valwgattteristic of the
group, which is nearly the value predicted by (5.25). Thaugiog of the modes is
distinguishable in all panels of Fig. 5.6, a careful insferof which verifies that
the grouping follows the laws found foFtori. Also, if we superpose the numerical
data of the three top (or bottom) panels we find that the aeseagonential slope is
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Fig. 5.6 The average harmonic energy of the gth mode over a time span= 10° as a function
of g in various examples of FPU trajectories, fBr= 0.3, in which thes(= N/16) first modes
are only excited initially viaQq(0) = Ag, Qq(0) =0,q=1,..., s, with the A; selected so that

the total energy is equal to the valie= H indicated in each panel. We thus have K& 64,
E=10"% (b)) N=128,E=2x10"% (c)N=256,E =4x 104 (d) N=64,E =103, (e)

N =128,E=2x 103, (f) N = 256,E = 4 x 10 3. The specific energy is constant in each of the
two rows, i.e.e = 1.5625x 1076 in the top row anc = 1.5625x 10~° in the bottom row. The
dashed lines represent the average exponential pEyititained theoretically by the hypothesis
that the depicted FPU trajectories lie closettori governed by the profile (5.27) (after [97]).

nearly identical in all panels of each row, a fact consistdtti (5.27), according to
which, for a given fractioM of initially excited modes, this slope depends only on
the specific energy, i.e. it is independentbfor constant.

If we now increase the energy, the FPU trajectories regufiiom s initially
excited modes start deviating from their associated exéaoti solutions. As a con-
sequence, the energy profiles of the FPU trajectories adsbtetdeviate from the
energy profiles of the exasttori. This is evidenced by the fact that the profiles of
the FPU trajectories become smoother, and the groups ofsiestedistinct, while
retaining the average exponential slope as predicted By 5T his “smoothing” of
the profiles is discernible in Fig. 5.7(a), in which the eygsgincreased by a factor
of 50 with respect to Fig. 5.6(d), for the same valuebl@ndf. Also, in Fig. 5.7(a)
we observe the formation of the so-called “tail”, i.e. anm@lerise of the localiza-
tion profile at the high-frequency part of the spectrum, agganied by spikes at
particular modes. This is a precursor of the breakdown of FRlurrences and the
evolution of the system towards energy equipartition, Widccur earlier in time as
the energy becomes larger.

It is important to note that exponential localization of FRHjectories persists
and is still characterized by laws like (5.25) even when thergy is substantially
increased. Furthermore, at energies beyond a threshalé vah interesting phe-



86 5 FPU Recurrences and the Transition from Weak to Strorg€£h

® Ne64 p =03 (c)

N=64 8 =0.3 (b)
T H=0.2 s=6

H=0.1 s=4

N=64 §=0.3
H=0.05 s=4

N=645=0.3 (f)
H=0.5 =12

N=645=0.3 (e)
H=0.4 =10

N=645=0.3 (d)
H=0.3 s=7

Fig. 5.7 Same as in Fig. 5.6(a) but for larger energies, namelyE(a) 0.05, (b) E = 0.1, (c)
E=0.2, (d)E=0.3, ()E =04, (f) E=0.5. Beyond the threshold ~ 0.05, theoretical profiles
of the form (5.25) yield the correct exponential slops i gradually increased from= 4 in (a)
and (b) tos=6in(c),s=7in (d),s=10in (e), ands= 12 in (f) (after [97]).

nomenon is observed: For fixéd (see e.g. Fig. 5.7, whei¢ = 64), as the energy
increases, a progressively higher valuesofeeds to be used in (5.25), so that the
theoretical profile yields an exponential slope that agreils the numerical data.
Whenf = 0.3, N = 64, this threshold valu&; ~ 0.1, splits the system in two dis-
tinct regimes: One foE < 0.1, where the numerical data are well fitted by a constant
choice ofs= 4 in (5.25) (indicating that the FPU trajectories are indelede to a
4-torus), and another fd& > 0.1, where “best-fit” models of (5.25) occur for values
of sincreasing with the energy, e.g— 6 for E = 0.2, rising tos= 12 forE = 0.5.
This indicates that the respective FPU trajectories argediog-tori with a progres-
sively higher value 0§ > 4, despite the fact that only the four first modes are excited
by the initial conditions.

This behavior is analogous to the “natural packet” scerdageribed by Berchialla
et al. [39], who observed that the localization profile ofitineetastable states begins
to stabilize as the energy increases beyond a certain ticeshdeed, according to
(5.25), such a stabilization implies that in the secondmegihe widths depends
asymptotically orE ass 0 EY2, or, from (5.27)M O €¥/2. This agrees well with
estimates on the width of natural packets in the FiBunodel as described in [230].
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5.3.1 Long time stability neag-tori

It, therefore, follows from the above results that as theoeemtial localization of the
energy in the long-modes relaxes, so will the FPU recurrences start to breakdo
sooner and equipartition will eventually take place. Thesiion remains, however:
What does all this have to do with the stability of tipori? How is the dynamics
in their vicinity related to the properties of the motion ra@lobally as the energy
increases?

The linear stability ofy-breathers, of course, just as any other periodic solution,
can be studied by the implementation of Floquet theory ($82]), which demon-
strates that g-breather is linearly stable as long as

6BEq,(N+1)
R= "7
T

<1+0(1/N?). (5.28)
This result is obtained by analyzing the eigenvalues of tb@adromy matrix of
the linearized equations aboutgebreather solution constructed by the Poincaré-
Linstedt series.

In the case ofj-tori, however, the above techniques are no longer avail&gv-
ertheless, a reliable numerical criterion for the stapihit g-tori is provided by the
GALI method. According to this approach, iftatorus becomes unstable beyond a
critical energy threshold, the deviation vectors of tregeies started on (or nearby)
the torus follow its unstable manifold, whence all GALId fal zero exponentially
fast. Most trajectories in that neighbourhood are weakgotic and begin to diffuse
slowly away to larger chaotic seas, where no FPU recurreoces and equipar-
tition reigns. Since all GALJ in that vicinity decay exponentially after a transient
time, this weak chaos transition at low energies can be tijrederred from the
time evolution of the lowest index, i.e. GALI

Using this criterion, we can study the stability gtori and determine approx-
imately the value of the critical enerdyt at which ag-torus turns from stable to
unstable. Note first that, due to the obvious scaling of thg HBmiltonian by, E.
is well fitted by a power laviec = AB 1 for all N considered, as shown in Fig. 5.8(a)
for N = 64. Here, the quantiti is obtained by keepindy fixed and varying3, until
a critical energy is determined, beyond which the GAlrddex loses its (nearly)
constant behavior. All calculations in Fig. 5.8 refer to aximaum timetyay = 107
up to which the exponential fall of GAklis observed. In generdt; decreases as
tmax increases, but appears to tend to a limiting valug,gs— . Thus, the values
of E¢ found in this way provide an upper estimate for the transiénergy at which
the exacg-torus turns unstable [95].

The fitting constanf, however, does depend dh as seen in Fig. 5.8(b), where
FPU trajectories are studied exciting the- 1,2, 3 modes, the] = 1,2 modes and
a q =1 breather. The data marked by squares (3-torus) and tesugttorus) in
Fig. 5.8(b) clearly show that the dependenc&ai N is considerablyveakerthan
theN—1 law, (5.28), derived for FPU trajectories started nearthel breather. In
that case, the data shown by filled circles in Fig. 5.8(b) leaswpe much closer to
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" (b)

Fig. 5.8 (a) The critical energ¥, at which the GAL} index shows that g-torus destabilizes, is
fitted by the solid lineE; = AB 1, with A = 0.164, for fixedN = 64 (the dashed line shows the
—1 slope separately for clarity). (b) Plottidgas a function ol for an FPU trajectory started by
exciting initially theq= 1,2, 3 modes (squares), or tiie= 1,2 modes (triangles), for fixe = 0.3
yields curves that lie well above the threshold (filled @s)lat which FPU trajectories neaga- 1
breather solution destabilize (the dashed line depictthé ! law (5.28)). The total integration
time for both panels ifnax= 10 (after [95]).

that predicted by (5.28), although the numerical curve itieshupwards with re-
spect to the dashed line. These results evidently demadm it the GAL) method
yields critical energie&. which are quitehigher than the values at which the
breather becomes unstable.

In summary, the upper two curves of Fig. 5.8(b) strongly ssgghat theg-
tori solutions aramore robustthan theg-breathers, regarding their stability under
small perturbations. Furthermore, they imply that the al@§zation of the simple
periodic orbit represented bycpbreather doesot imply that the tori surrounding
theg-breather are also unstable.

At any rate, it is important to remark that the exponentiabliation of FPU tra-
jectories persists even after the associatédeathers og-tori have been identified
as unstable by the GALI criterion. This is exemplified in F3g0, where panels (a)
and (c) show the time evolution of the GAlihdex for two FPU trajectories started
in the vicinity of 2-tori of theN = 32 andN = 128 systems, whefi = 0.1 and
tmax= 10’. In both cases, the energy satisfies- E, as the exponential fall-off of
the GALL index is already observed = 10°. Nevertheless, a simple inspection
of Figs. 5.9(b) and (d) clearly shows that the exponentizdliaation of the energy
persists in the Fourier space of both systems.
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Fig. 5.9 (a) Time evolution of GAL$ up totmax= 107 for an FPU trajectory started by exciting
theq= 1 andg =2 modes in the systeid = 32, 3 = 0.1, with total energye = 2, i.e. higher than
Ec = 1.6. (b) Instantaneousocalization profile of the FPU trajectory of (a)tat 107. (c) Same as
in (a) but forN = 64, E = 1.323 (in this case the critical energyks = 1.24). (d) Same as in (b)
but for the trajectory of (c) (after [97]).

5.4 Rate of diffusion of energy to the tail modes

We shall now obtain a law of diffusion using the sum of the thatd of the nor-
malized linear energiesy. The reason for choosing this set with the shortest wave-
lengths is because they exhibit the largest variationsair ttarmonic energies and
consequently yield a more efficient criterion for predigtof the time required for
energy equipartition.

The sum of normalized harmonic energies for the mode intergg2N/3,N] is
calledtail mode energyn [279] and is defined by
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N
=y e). (5.29)

q=2N/3

for the spectrum of energies.

In Fig. 5.10 we plot the function (t), for the energy valueE = 0.01,E =0.1
andE = 1, in log-log scale as a function of time and observe a diffasaw of the
form

n 0O DtY. (5.30)

Fig. 5.10 Time evolution
of the energy of tail modes N=32
for the FPUa model, with

N =31 anda = 0.33. The
bottom curve corresponds to
total energyE = 0.01, the
middle one toE = 0.1 and
the top curve tcE = 1, for

the instantaneous normalized
harmonic energiesy (after
[95, 279)).

Let us now determine the dependence of the paramBtexrsd y on the total
energy of the syster, given thatu = al/2¢%/4 is the only independent parameter
of the problem. To this end, let us examine the FWJystem withN = 31 anda =
0.33, for 200 values of the total energy, starting with= 0.01 by 0.01 increments
up to the valueE = 2. In Fig. 5.11 we estimate the value pfor the energies of
the tail modeg) as a function ok, using the method of least squares, for suitably
long time intervals during which the tail mode energiesséatihe law (5.30). Since
for every energy value we have a different time intervaljmyiovhich the tail mode
energies grow linearly (in log-log scale), it is practigailinpossible to repeat the
calculation for every value d&. For this reason we split the computation in 3 energy
ranges: aE < [0,0.51], where the appropriate time interval [i50%, 3 x 10°], b)

E € [0.52,0.66], where this interval i$3 x 10% 10°] and c)E < [0.67,2], for which
the time interval i§103, 3 x 10°].

Thus, in Fig. 5.11, plotting in (5.30) as a function d&, we find that the system
exhibitssubdiffusionsince the power dfin (5.30) is generally smaller than unity.
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Fig. 5.11 Plot of the value of
y of the energies of the tail N=32
modesn of the FPUa chain, 14t ]
with N = 31 anda = 0.33 )
(after [95, 279]).

Exercises

Exercise 5.1.Show that the spectrum of the unperturbed (harmonic) frecjes
Qq, given by (5.7), is fully incommensurablelf is either a prime number minus
one, or a power of two minus one. Hint: See Exercise 4.1.

Problems

Problem 5.1.(a) Carry out in detail the steps outlined in Sect. 5.2.1 gpulyathe
Poincaré-Linstedt series method to construct a 2-torligisn with N = 8, and a
4-torus solution wittN = 16 for the FPU- model (5.3) with3 = 0.1.

(b) Choosing initial conditions on these tori, implementarically the methods of
SALI and GALI described in Chap. 3 to show that these tori daable for small
enough values of the total energy

(c) Increasing the value &, determine critical values = E¢(2) andE = E.(4), at
which these tori first become unstable.

Problem 5.2.Repeat the calculations of Problem 5.1 for the F?Wdodel, with
Hamiltonian

N , «a
Z (X1 — Xi)“ + 3
K=o K

(X1 — %), (5.31)

M=z

1 N 1
H=>Sye+2
2I(Zl 2 0

fixed boundary conditions(0) = X(N+ 1) = 0 anda = 0.1. Show that the appro-
priate transformations to canonical variabl@gs Py, defined by (5.5), lead to

=z

N
(Pg—i-.QgQg)—i— Z Bg, . m2q2 QmQqQiQm ,  (5.32)

a
1 3V2(N+1) 151

H:

NI =

q
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whereQq denotes the linear normal mode frequencies (5.7) and thalingucoef-
ficientBq m between the modes is given by the formula

Bq,l,m = ;(%ilim,o - 5qilim,2(N+l))- (5-33)

Compare the results with the corresponding findings ohtHioethe FPUB model
in Problem 5.1.



Chapter 6
Localization and Diffusion in Nonlinear
1-Dimensional Lattices

Abstract In this chapter we focus on localization properties of nogdir lattices
in the configuration space of their spatial coordinates.drtigular, we begin by
discussing the phenomenon of exponentially localizedogiéioscillations, called
discrete breathers, in homogeneous one-dimensionaldattbDemonstrating that
they are directly connected with homoclinic orbits of inigle maps, we describe
a precise numerical procedure for constructing them tatrarily high accuracy.
Furthermore, the homoclinic approach allows for the synehaassification of all
multibreathers (having more than one major amplitudesysgtric and asymmetric
and can be extended to 2D lattices. We also analyze the ((Jistdility of breathers
and show how their bifurcations can be monitored using nustod feedback con-
trol. Chap. 6 ends with a description of important recentilitssondelocalization
and diffusion of wavepackets in lattices with random disorgointing out the com-
plexity of these phenomena and the open questions thatestiin.

6.1 Introduction and Historical Remarks

Localization phenomena in systems of many (often infinitegrdes of freedom
have frequently attracted attention in solid state physioslinear optics, supercon-
ductivity and quantum mechanics. It is well-known, of cayrhat localization in
lattices can be due to disorder (see e.qg. [1]), while, if tisemder is random, one
encounters the famous Anderson localization phenomer@nThere is, however,
another very important type of localization, occurring mntogeneous infinite di-
mensional Hamiltonian lattices, which d/namic It refers to localized periodic
oscillations arising not because of the presence of soneetidfut due to the inter-
action between nonlinearity and the spectrum of linear mbmodes (or phonons)
of the system.

We are talking, in particular, about a remarkable phenomearadled discrete
breathers representing periodic oscillations of very few sites, anlinear lattices
consisting, in principle, of infinitely many particles! & surprisingly common in
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discrete systems, in contrast to continuum systems (Iikegst membranes or fluid
surfaces), where it only appears in certain very speciabirable examples. Since
the reader may not be too familiar with these concepts, wifalsapresent a brief
review of the history of discrete breathers and then desdndw one can study
them using homoclinic orbits of multi-dimensional mapsisTapproach not only
provides a very efficient method for computing discrete tirets, but also leads
to a systematic way of classifying them and allows us to aely follow their
existence and stability properties as certain physicapaters of the problem are
varied.

Atthe beginning we will deal exclusively with homogeneaaittites (of identical
masses and spring constants) and proceed in subsequénséztreat the problem
of diffusion in disordered lattices starting with an initexcitation of very few sites,
which has recently received a great deal of attention initemture.

6.1.1 Localization in configuration space

In 1969, while studying a system of coupled nonlinear aattilis modeling finite-
sized molecules, Ovchinnikov [264] showed in a very bealtifay how discrete-
ness in combination with an intrinsic nonlinearity of thestgm can cause energy
localization of the type discovered by FPU. He demonstrateparticular, that res-
onances between neighboring oscillators can be avoided thieevibrations of the
system lie outside the so-call@thonon bandor spectrum of linear normal mode
frequencies (see Fig. 6.1). Thus, the recurrence phenomémaFPU experiments
can be explained as the result of limited energy transpdviden Fourier modes,
caused by discreteness and nonlinearity effects. Todapwse, our understanding
of this phenomenon is considerably advanced through thiysasaf exponential
localization in Fourier space described in detail in Chap. 5

Twenty years later (1988), the subject of localized odtidltgs in nonlinear lat-
tices was revived in a seminal paper by Sievers and Taker8),[80o used analyt-
ical arguments to show that energy localization occurs gealty in FPU systems
of infinitely manyparticles in one dimension, obeying (5.1).

Combining their perturbative analysis with numerical expents, they demon-
strated that a new class of solutions, known to date as disbreathers, exist as
oscillations which are both time-periodic and spatiallgdlized. In their simplest
form, these solutions exhibit significant excitations oohthe middle 6 = 0) and
nearby 6= —1, +1) particles. However, a great many patterns are also destie
so-calledmultibreathersin which several particles oscillate with large amplitsde
as shown here in Fig. 6.2. How can one determine all the pessilapes? Which
of them are stable under small perturbations? These areirtdeok questions we
would like to address in the next section.

Besides the FPU system, the existence of these localizéithtienos was soon
verified numerically by other research groups on a varietattites, including the
Klein-Gordon (KG) system of ODEs written in the form
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(b)

Fig. 6.1 Local energiess; (t) (solid line) andE; (t) (dashed line) of the two coupled nonlinear
oscillators considered in [264], showing how energy transf impeded by discreteness and non-
linearity. (a) Complete energy transfer when the first ¢estcit has initial amplitude = 2.0, for

E; (0) = 2.4) and (b) Incomplete energy transfer when the first osoillags initial amplitude
a=2.5andE; (0) ~ 4.1 (after [54]).

Un = =V’ (Un) + 0 (Uny1 — 2Un+ Un_1), V(X) = %Kx2+ %X“, —o<n<o (6.1)
whereV(x) is the on-site potentialy > 0 is a parameter indicating the strength of
coupling between nearest neighbors, dhdi¢notes differentiation with respect to
the argument 0¥ (x).

It was not, however, until 1994, that a mathematical proothef existence of
discrete breathers was published by MacKay and Aubry [238hé case of one-
dimensional lattices of the type (6.1). Under the genealiaptions of nonlinearity
and non-resonance, such chains of interacting oscillaters rigorously shown to
possess discrete breather solutions for small enoughsrafiiee coupling parame-
tera, as a continuation of their obvious existencerat 0.

Section 6.2 below is devoted to a study of discrete breatmetanultibreathers
based on the concept of homoclinic orbits of invertible m#&msshas been pointed
outin a number of papers [63, 43, 42, 64], homoclinic dynarofters a very conve-
nient way to construct such solutions and study their stgipitoperties, away from
the a = 0 limit, through the “geometry” of the homoclinic solution$ nonlinear
recurrence relationsThe results we shall describe have been presented in [£0, 41
while for the most recent developments in this field the readstrongly advised to
consult the recent review article [129].

Itis also important to remark at this point that, althougkctlyy speaking discrete
breathers are proved to exist in infinite lattices, in peEtive construct them as
solutions of a finite number of ODEs of the form (6.1), takinly < n < N, whereN
is large enough so that particles near the end of the lattecpractically motionless.
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Fig. 6.2 Examples of discrete multibreathers of an FPU lattice offdhe (5.1) with cubic rather
than quadratic forces (the so-called FPBmodel), obtained by starting a Newton-Raphson search
using homoclinic orbits of a map of the form (6.6) as an ihigaess. The term ‘multibreather’
refers to the fact that more than one site exhibit oscilfetiof comparably large amplitude (after
[54]).

6.2 Discrete Breathers and Homoclinic Dynamics

Focusing on the property of spatial localization, Flach t&sfirst to show that dis-
crete breathers in simple one-dimensional chains can heatety represented by
homoclinic orbits in the Fourier amplitude space of timeiqdic functions [126].
Indeed, inserting a Fourier series

W(®) = 3 An(explikant) 6.2)
K=o

into the equations of motion of either the FPU or KG (6.1)i¢attand setting the
amplitudes of terms with the same frequency equal to zeadlsl¢o the system of
equations

—K2e@An (K) = (—V' (Un) + W (Uny1 — Un) =W/ (Un — Un_1) , exp(Tikapt)),
vk.nezZ, (6.3)
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whereW is the potential function] an infinite unit matrix andw, the frequency
of the breather. This is an infinite-dimensional mapping e Fourier coeffi-
cientsA, (k), with the brackets.,.) indicating a normalized inner product. Time-
periodicity is ensured by the Fourier basis functions @#au,t). Spatial localiza-
tion requires thaf\, (k) — 0 exponentially as — +. Hence a discrete breather is
a homoclinic orbit in the space of Fourier coefficients,a doubly infinite sequence
of points beginning at 0 fan — —oo and ending at O fon — +co.

As a simple example, let us consider an infinite one-dimeradimodel which
plays an important role in many physical systems [191]: ttascribed by a special
form of the discrete nonlinear Schrodinger (DNLS) equatio

iUn+ Y]Un®Un + (14 |Un?) (Un-1+Unt1) =0, NEZ. (6.4)

Suppose now that we seek periodic solutions of the fagm= x,exp(iwt), with
Xn real. Substituting this expression af in (6.4) and eliminating the exponential
exp(iwt) leads to the two-dimensional map

2
W—Y*n

T)(%Xm X ER. (6.5)

Xn+1+Xn-1 =

This map has three fixed points, in general, intkex,.1) plane: One at the origin
and two located symmetrically along the diagogak x,.1. The eigenvalues of the
linearized equations about these equilibria dictate baj.forcw = 0.25 andy = —3
the ones on the diagonal are saddles, witll®) is a center (see Exercise 6.1).

On the other hand, faw = 4 andy = 1 the fixed point at the origin is a saddle,
while the other two fixed points are centers. This is the chs@/s in Fig. 6.3, where
the stable and unstable manifoldg6f0) have been plotted. Clearly, their intersec-
tions form homoclinic orbits, which yield discrete breath@nd multibreathers) of
the DNLS equation with frequenay = w, as follows: Since, by definition, homo-
clinic orbits satisfyx, — 0 asn — 4o, very few of theirxn, X, 1 coordinates have
appreciable magnitude, corresponding to sitew/hich are oscillating periodically
with frequencyw.

Now, if a homoclinic orbit is formed by intersections of thesfipart of the stable
(resp. unstable) manifold with the first “lobes” of the utdég(resp. stable) manifold
of the saddle point af0,0), this yields an orbit that makes one loop around the
elliptic point and leads to oscillations with a single magonplitude belonging to a
simple breather. If, on the other hand, the homoclinic arbitsists of intersections
between “lobes” of both manifolds and makes several loopsidn elliptic point,
it leads to oscillations with large amplitudes at severassand hence corresponds
to a multibreather.

Of course, if the Fourier expansion of a breather consisasofgle term, as in the
DNLS case, the associated 2-dimensional map represergsgdloedynamics. What
happens, however, in a case like the KG system (6.1), wherguihstitution of (6.2)
leads to an infinite dimensional map like (6.3) for the Foucieefficients? Not to
worry. Owing to the exponential decay of their magnitudescan get away keeping
only the largest onek(= 1), reducing (6.3) to a simple 2D map, faf = An(1), of
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Fig. 6.3 The stable (dashed
curve) and unstable (solid
curve) manifolds of the
fixed point at(0,0) of a 2D
DNLS map of the form (6.5),
With Yn = Xny1, OF Xn = &,

Yn = @n+1 as in (6.6). The
manifolds are clearly seen to
intersect at infinitely many
points, hence a wealth of ho-
moclinic orbits exists (after
[54]).

15

the form

81 = 9g(an,an-1) - (6.6)

The invariant manifolds, emanating out of the saddle pditit@origin, could then
be plotted, as in Fig. 6.3 for example, by the method desdiibb&xercise 6.1. Itis
easy to apply this approach to the KG chain, where the abalection yields the
map

K — w?

1
8ni1=—8n1-Cant_a), C=-2+ (6.7)

(see Exercise 6.2 and Problem 6.1). As explained in [63],aameuse this map to
find approximate analytical expressions for the coefficgentthat will allow us
to obtain numerically not only simple breathers but alsotintdathers of the KG
chain. Moreover, interesting effects arise when one apphé approach to KG
“soft” potentials with a minus sign before the quartic teisad (6.1) [265].

6.2.1 How to construct homoclinic orbits

As is hopefully clear from the above discussion (as well asr&iges 6.1 and 6.2),
the accurate computation of invariant manifolds and the@rsections is extremely
important for constructing discrete breathers and mudtkbwers. For this reason, we
shall now describe a particularly useful and efficient mdthiwat has been devel-
oped in [43] to locate homoclinic orbits of invertible magdsaobitrary (but finite)
dimension. As it turns out, we need to exploit certaymmetry propertiesf the
dynamics and understand the “geometry” of the invariantifolds near the origin,
which we shall henceforth assume to be a saddle point of tps nmader study.
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To see how this can be done, let us consider a general first orae (or recur-
rence relation) of the form

Xnt1 = F(Xn) , Xn, Xny1 € RY ) (6.8)

whered > 2 is a positive integer. Recall that homoclinic orbits arkisons which
satisfyx, — 0 asn — 40 and concentrate on all orbits satisfying a symmetry con-
dition of the form

Xn = fon 5 (69)

whereM is ad x d-matrix with constant entries and det¥0. Furthermore, observe
that if an orbit obeys such a symmetry and— 0 asn — —oo, it is also true that
Xn — 0 asn — . Hence, any orbit which obeys this symmetry and also satisfie
Xn — 0 asn — —oo is a homoclinic orbit.

To construct such an orbit, we first need to specify numdyiéed asymptotic
behavior as1 — —oo. In other words, it has to be on the unstable manifols ef0.
Thus, given that the origin is a saddle fixed point, it is kndhatt its unstable man-
ifold is well approximated in its vicinity by the correspand Euclidean subspace
of the linearized equations, which is tangent to the noalimeanifold and has the
same number of dimensions.

Now, the dimension of the linear unstable subspace equalsumber of coor-
dinates necessary to determine a paing, N > 1 uniquely. So, by choosing this
point to be on the linear unstable manifold, very close todhgin, it will also
lie approximately on the corresponding nonlinear manifdldus, when mapped
forwardN + 1 times, we can test whether it satisfies the above symmdaiiae
(6.9). By this reasoning, locatirgymmetrichomoclinic orbits reduces to a search
for solutions of the system

X1 —Mx_1 = 0
{ Xo—Mxo — 0 ° (6.10)
since, giverx_y, the values oki, Xg andx_; are uniquely obtained by direct itera-
tion of the map (6.8).

Now, given thatx; = F(xp) andx_1 = F~1(xo), (6.10) can be solved foxo,

searching for solutions of the equation

Z(xg) = F(xg) —MF 1(xg) = 0. (6.11)

The number of unknowns in this equation @&, 21 being the dimension of the un-
stable manifold. However, a zero of this function autonahcimplies xo = Mxg
(i.e. the second componentxf is equal to zerowy = 0), reducing the number of
unknowns tad.

Suppose now thadeq is a fixed point of the map (6.8) and a statgy exists, with
N > 1, for whichx_n_n — Xeg@Sn — o, i.e.X_n is on the unstable manifold ck
Thus, the poink_y can be uniquely identified by @&dimensional coordinate, say
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0. Sincexp = FN(x_y) this also determines all the unknowns in (6.11), which can
thus be written as an equati@io) = 0. Clearly, every coordinate solving this
equation defines an orbit of (6.8) having the desired asytiegiiehavior. The search
for homoclinic and heteroclinic solutions, therefore,uees to finding a state
on the unstable manifold of the equilibrium poit, determined by the coordinate
o, forwhichZ(g) = 0. This yields a set a equations withrd unknowns, and hence
is, in general, solvable e.g. by Newton iterative methods.

In the case of an invertible map, we can use this method tdialdall asymmet-
ric homoclinic orbits, i.e. those which do not obey the symmetmdition (6.10).
This can be done by introducing the new “sum” and “differénegiables

)

Vn - Xn+X7n
Wn - Xn—an

which always possess the symmetry

{ Vn=Ven o (6.12)
Wn == —an

In this way, we can apply again the above strategy and lookyommetric homo-
clinic orbits of a new map (whose dimension is twice that efdhiginal f) described
by the equations

I R
Lona = £ () - 2 1)

yielding homoclinic orbitsx, of the original mapf (6.8), that are not themselves
necessarily symmetric. On the other hand, each homoclibitaf f is a symmet-
ric homoclinic orbit of the new mag. Therefore, by determining all symmetric
homoclinic orbits ofF, we find all homoclinic orbits of . In fact, it is possible by
this approach to classify all multibreathers ofld#particle one-dimensional lattice
by assigning to them symbolic sequences in a systematic agafgllows: If, at a
moment when all velocities are zero, a particle has a largéip® (resp. negative)
displacement, it is assigned4a (resp.—) sign, while if its displacement is small
it is assigned the symbol 0. We then introduce 9 new symbois:—+, B = 0+,
C=++4,D=-0,0=00,E=+40,F = ——, G=0-— andH = +— corresponding
to 9 regions of the associated 2D map where these points@teth One may thus
locate multibreathers of increasing complexity, whose bemof course, grows
with increasingN. The interested reader is referred for more details to [2Baad
Fig. 6.4 for an example of the results presented in theserpape

It is important to mention that, besides the above approaskdon homoclinic
orbits, there also exist other methods to compute breattretsnultibreathers that
one may find simpler or more straightforward to implementhBps the most pop-
ular of them starts from the so called “anticontinuum limithere the particles are
uncoupled and uses Newton iterative schemes to contingebhitons to the regime
of finite coupling [251, 22]. The homoclinic approach, hoeg\also has important

(6.13)
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advantages: It uses Fourier decomposition to turn the prolbd an invertible map
whose low-dimensional approximations yield very accuiatiéal conditions for

the homoclinic orbits, provides a clear geometric and sylinlatescription of all

breathers and multibeathers and can be used to locate sutiors® in lattices of
more than one dimension, as we demonstrate in the sectibfotioavs.

(a) .

ocC 2

s ‘ (d)]

o OACB -

Fig. 6.4 Several homoclinic orbits of the m&p(6.13), determined by a zero-search of the system
of equations/; —v_1 = 0 andwg = 0, related by, = X +x_p andwp = X, —X_. Shown here are

vy (dashed, wy, (dotted andx, (solid). Also indicated is the symbolic name of the orbit assigned
by the procedure outlined in the text and described in det§d3, 42](after [54]).

6.3 A method for constructing discrete breathers

Based on the above results, we now describe a method for domgpdiscrete
breathers that can be efficiently applied to: (i) latticesnaire than one spatial di-
mension and (ii) systems with vector valued variables agslgo each lattice site.
The main idea is to write a breather solution as the produzplce-dependent and
a time-dependent part and reduce the problem to the congutdthomoclinic or-
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bits of a 2D map, under the constraint that the given ODEsqssssimple periodic
oscillations of a well-defined type and specified period.

As we have already discovered, it is possible to formulatep im Fourier ampli-
tude space linking discrete breathers to homoclinic arbités map can be reduced
to a finite-dimensional recurrence relation, by negleckogrier components with
a wave numbek larger than some cutoff valugnax. Then, one can use the meth-
ods described in [43, 42] to approximate discrete breatbietiens by finding all
homoclinic solutions of the corresponding recurrenceticaia.

This problem has also been examined from a different petispetn 2002, in-
spired by the work of Flach [125] and Kivshar [192], Tsirof#87] suggested a new
way to approximately separate amplitude from time-depeoelgyielding in some
cases ODEs with known solutions (for example elliptic fumes) while keeping the
dimension of the recurrence relation as low as possibles [Edito an improved ac-
curacy of the calculations and provided analytical expoessof discrete breathers
for a special class of FPU and KG systems.

In [40], Bergamin extended Tsironis’ work by developing anerical procedure
for which the time-dependent functions need not be knowiyéoally. In this way,

a much wider class of nonlinear lattices can be treated wiwglscalar or vector
valued variables in one or more spatial dimensions. In @aletr, the approximation
proposed by Tsironis can be formulated as follows

Uni1(t) —Un(t) = (@ni1—an) Tn(t)
{Un+1(t) —Un(t) = (anjl—an)Tn (t) (6.14)

wherea, denotes the time-independent amplitudeugft) and T, (t) is its time-
dependence, defined By (0) = 1 andT, (0) = O.

Note now, that since all FPU and KG systems are described nailtdnian of
the form

[ee]

5B S V) W)

p n=—oo

H:

NI =

we may use the approximation (6.14) to transform the egusitdd motion
Un = —V' (Un) + W (Uny1 — Un) =W (Up — Un_1)
into
anTn = =V’ (@Tn) + W' ((ans1—an) Tn) =W (@ —@n-1)Tn) . (6.15)

This is an ODE fofT, (t) which can, in principle, be solved since the initial condi-
tions are known.

Of course, an analytical solution of (6.15) is in generalwdifficult to obtain.
However, since we are primarily interested in the amplisagiewhat we ultimately
need to do is develop a numerical procedure to find a recugnetation linkingay,
an. 1 anda,_; without having to solve the ODE beforehand.
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Let us observe first, that the knowledgeaaf a1 anda, 1 permits us to solve
the above ODE numerically. Under mild conditions, solusidp(t) can thus be
obtained, which are time-periodic, while for a discretedbher all functionsy, (t)
have the same period. Choosing a specific value for this ghesiows us to invert
this process and determimg,; as a function ofa, anda, 1, just as we did in
(6.6). In the same way, we also determae; as a function ob, anda 1. Thus,

a two-dimensional invertible map has been constructedh®at, ensuring that all
oscillators have the same frequency.

As is explicitly shown in [40, 41], on a variety of exampldss thomoclinic orbits
of this map provide highly accurate approximations to tlsedite breather solutions
with the given period and the initial statig (0) = a,, U, (0) = 0. In fact, we can now
apply this approach to more complicated potentials anddrighmensional lattices,
as demonstrated in Fig. 6.5, where we compute a discreténleresolution of a 2-
dimensional lattice, with indices, min thex, y directions and dependent variable

Un,m (t).

Fig. 6.5 A breather in a 2-
dimensional lattice is obtained
by the method described in the
text, for equations of motion

where the particles at each 15
lattice site(n,m) are subject
to an on-site potential of 1

the KG type and experience

harmonic interactions with -
their 4 nearest neighbors after Q,E
[40)). £

10

Having thus discovered new and efficient ways of calculatiisgrete breathers
in a wide class of nonlinear lattices, we may now turn to astittheir stability,
continuation and control properties in parameter spacaeMpecifically, we will
show that it is possible to use the above methods to extertbtnain of existence of
breathers to parameter ranges that cannot easily be addssether more standard
continuation techniques.
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6.3.1 Stabilizing discrete breathers by a control method

So far, we have seen that transforming nonlinear latticagjs to low-dimensional
maps and using numerical techniques to compute their hamioolrbits provides
an efficient method for approximating discrete breathemny (finite) dimension
and classifying them in a systematic way. This clears thle fmatan investigation of
important properties of large numbers of discrete breatb&increasing complex-
ity. One such property, which is relevant to many appligaiand requires that a
solution be known to great accuracy is (linear) stabilityiine.

In [64], the accurate knowledge of a discrete breather moluvas used in a
rather uncommon way to study stability properties: As islwabwn, a familiar
task in physics and engineering is to try to influence the iehaf a system, by
applying control methods. By control we refer here to theitaid of an external
force to the system which allows us to influence its dynaniicparticular, our ob-
jective is to use this force to change the stability type oifsamtte breather solution
from what it was in the absence of control.

It is important to emphasize, of course, that during theiapfibn of control our
system is altered in such a way that the solution itself da#schange. In other
words, the controlled system possesses solutions whicexaely the same as in
the uncontrolled case. Thus, if a solution is unstable irutheontrolled system, the
extra terms added to the equations by the external forcingaase the solution to
become stable and vice versa. This approach is often calktbfick control and
was first used very successfully to influence the motion ofagyical systems by
Pyragas in [281].

The system that was studied in [64], using the above feedtx@ukol method, is
a KG one-dimensional chain, whose equations of motion aitéawiin the form

d .
tn = =V’ (Un) + @ (Un1— 2Un+Un_1) + L& (Gn—un) , (6.16)

whereu, = Un(t) is the known discrete breather solution of the equationsnwhe
L = 0. The parameteL indicates how strongly the control term influences the
KG system. Thus, for any value &f un(t) = On(t) is clearly a solution of both
the controlled as well as the uncontrolled equations. Glefar L > 0, L%un is a
dissipative-like term, whilé;% U, represents a kind of periodic forcing. It is there-
fore reasonable to investigate whether, by increakinte dissipative part of the
process will force the system to converge to a stable sa@lulfdhis solution is the
Gn(t) we started with, the latter is stable. If this is not the caise,original solu-
tion is unstable. Indeed, it is not difficult to prove (usinigduet theory and Hill’s
equation analysis [243, 253, 347]) the following propasiti

Proposition 6.1.Let u, = 0y (t) be a periodic discrete breather solution of the lattice
equations

Un = —V'(Up) + @ (Uny1 — 2Un+Un_1), —N <N <N,
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where N is large enough so that the solutigyft) exists. Then there exists an-L0
such that y = Un(t) is an asymptotically stable solution of the modified (cdied)
system

Un = =V’ (Un) + @ (Uny1— 2Un+Un_1) + L% (Gn— Un) -
This result clearly implies that, by increasihgit is possible to stabilize the original
solution, independent of its stability character in theamtoolled situation. Let us
demonstrate this by taking the breather of Fig. 6.6, whichristable at. = 0,
substitute its (known) solution form, (t) in the above equations and increase the
value ofL. As we see in Fig. 6.7, it is quite easy to stabilize iLat 1.17, since
increasing the value df gradually brings all eigenvalues of the monodromy matrix
of the solution inside the unit circle.

Fig. 6.6 A breather solution
of equations (6.16), (t) =
Gn (), which is unstable for
L = O (after [64]).
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o
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The above Proposition has an additional significant adgantd gives us the
opportunity to address the question of éxéstenc®f discrete breathers in ranges of
the coupling parameter where other more straightforward continuation techniques
do not apply. In order to do this, it is important to recall htvis question was
originally answered in the existence proof of MacKay and Aaibsing the notion
of the so-called anti-continuum limét = 0 [238].

Let us observe that the KG equations of motion

%=V (X)+a(Xii1—2G+%-1),

describe a system of uncoupled oscillatorstfes 0. Obviously, in that case, any ini-
tial condition, where only a finite number of oscillators Ba/non-zero amplitude,
produces a discrete breather solution. In their celebragger of 1994, MacKay
and Aubry prove that, under the conditions of nonresonarittethhe phonon band
and nonlinearity of the functiod’ (x), this solution can be continued to the regime
wherea > 0.
According to their approach, however, continuation dor- O is possible, only

as long as the eigenvalues of the Floquet matrix of the soludio not cross the
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1 (@L=00 1 (b)L=1.10
0.5 0.5
g g X
g 0 * * g i
-0.5 -0.5
-1 -1
1 0 1

- 2 3 4 5 -1 0 1 2 3 4 5
real real
1 (c)L=1.17 1 (dL=1.25
0.5 0.5
¥
j=2) j=2)
_E 0 L)g(xx _E 0 ﬁx«x X
-0.5 -0.5
-1 -1
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
real real

Fig. 6.7 Increasing the control parametefrom L = 0 in the system (6.16), using as initial shape
the one given in Fig. 6.6 moves the eigenvalues of the momagratrix of the orbit inside the
unit circle. Initially, some eigenvalues lie outside thetwircle, but eventually, fot. > 1.17, all
eigenvalues attain magnitudes less than one, thus achistability and control (after [64]).

value+1. This means that the typical occurrence of a bifurcatiomugh which the
breather becomes unstable, prevents such a continuatwaaat from following
the breather beyond that critioalvalue. This is where the control method proposed
in [64] comes to the rescue: As we can see in Fig. 6.8, follgvarpath ina > 0
andL > 0 space, a discrete breather solution can be continued gharvalue of

a, by choosingd. in the controlled system such that the solution remaindestab

Therefore, since by the above Proposition one can alwayd fisich that sta-
bility is possible for any couplingr, this allows the continuation of any solution
of thea = 0 case tax > 0 values beyond bifurcation, demonstrating the existence
of breather solutions in the corresponding parameter regirhe fact thatin(t)—
which is a stable solution of the controlled system—is byridtdin also an unstable
solution of the uncontrolled system, implies that we hawesaded in continuing a
discrete breather solution to higher valuestobeyond the bifurcation point.

In Fig. 6.9, we show inL,a) space the regions of stability of this particular

breather. As is well-known by the work of Segur and Krusk&J[3 breathers are
not expected to exist in these systems in the continuum émit going to infinity.
At what coupling value though and how do they disappear? Gaansg our control
aided continuation methods to follow them at arbitrarilgthio to answer such
questions? These are open research problems that offezstitey applications of
the methods we have described in this chapter.
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Fig. 6.8 (a) As the uncontrolled system approaches a bifurcationtbsome critical valuecr =
0.081 whenL = 0, the bifurcation can be avoided as follows: (b) Fiximg= 0.08 and increasing
the control parameter, for examplelte= 0.13, where the breather solution is asymptotically stable,
(c) increasing the coupling strengthdo= 0.082 and (d) switching off the control to return to the
breather of the uncontrolled system, which is now unstaidfter([64]).

Fig. 6.9 Relation between 18— : : : : ; ; ; ‘
the control parametdr and
the coupling strengthor: If

o is increasedl has to be
larger to achieve stability and
successful control. Shown
here are the regions for which
the breather of Fig. 6.6 is a
stable or unstable solution

Un (t) = Gn (t) of (6.16) (after
(64]).
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6.4 Disordered Lattices

6.4.1 Anderson localization in disordered linear media

Let us now turn our attention to the topic of 1-dimensiotiabrderedlattices that
have applications to many physical problems.
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One fundamental issue of interest to condensed matter gshyss (and still
remains) the study of conductivity of electrons in solidsc® in an infinite per-
fect crystal electrons can propagate ballistically, a retquestion to ask is what
happens in a more realistic situation when disorder is ptasehe crystal due to
impurities or defects? Will an increase of the degree ofrdisolead to a decrease
of conductivity, or not? These questions were first answar@dseminal paper by
Philip Anderson [10], where it was shown that if disorderaigge enough the diffu-
sive motion of the electron will come to a halt. In particulanderson studied an
unperturbed lattice of uncoupled sites, where the pertimbavas considered to be
the coupling between them, and randomness was introdudkd on-site energies.
For this model he showed that for a large degree of randomtiessansmission of
a wave decays exponentially with the length of the lattice.

This absence of wave diffusion in disordered media is noysdalledAnder-
son localization and is a general wave phenomenon that applies to the trdnspo
of different types of classical or quantum waves, like etmtiagnetic, acoustic and
spin waves. Its origin is the wave interference between ipialscattering paths;
i.e. the introduction of randomness can drastically distbie constructive interfer-
ence, leading to the halting of waves. Anderson localirgiays an important role
in several physical phenomena. For example, the locadizadf electrons has dra-
matic consequences regarding the conductivity of masershce the medium no
longer behaves like a metal, but becomes an insulator weesttength of disorder
exceeds a certain threshold. This transition is often refeas the metal-insulator
transition.

Although today the significance of Anderson localizationvidl recognized as
indicated for example by the large number of theoretical mungherical papers re-
lated to this topic, its physical relevance was not fullyliemal for many years. The
fact that experimental observation of Anderson localarativas (and still is) a cum-
bersome task played an important role in this situation.

Many theoretical and numerical approaches of localizasitamt with the An-
derson model: a standard tight-binding (i.e. nearesthimghopping) system with
on-site potential disorder. This can be represented in amertsion by a time-
dependent Schrodinger equation

.0

la—qtll =8 — Y1 — Y1, (6.17)
whereg are the random on-site energies, drawn from an uncorrelatiéorm dis-
tribution in [-W/2,W/2], whereW parameterizes the disorder strength gnds
the complex wave function associated with lattice $itéJsing the substitution

Y = A exp(—iAt) yields a time-independent system of difference equations
AA =gA A 1A, (6.18)

whose solution consists of a set of eigenvectors calleddhaal mode eigenvectors
(NMEs), A, (normalized ag | (A/)? = 1), and a set of eigenvalues called the nor-
mal frequencies), . All eigenvectors are exponentially localized, meanirag their
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asymptotic behaviocan be described by an exponential depay| ~ e™!/¢(*v),
where & (Ay) is a characteristic energy-dependent length, calledidbalization
length Naturally,é — oo corresponds to an extended eigenstate. Several approaches
have been developed for the evaluatioréofsuch as the transfer matrix method,
schemes based on the transport properties of the lattiveglbas perturbative tech-
niques. For more information on such approaches, the résderred to [209] and
references therein.

The mathematical description of Anderson localizationeblasn the above for-
malism is useful for theoretical approaches, but not so nfiaicexperimental stud-
ies. Clearly, unbounded media do not exist and eigenvalueigenstates are rarely
measured in real experiments, where mainly measurememtargition and con-
ductivity are performed. So the need for a connection betwesmductivity and
the spectrum of the system becomes apparent. The basicagbpgawards the ful-
filment of this goal was the establishment of a relationst@pmeen conductivity
and the sensitivity of the eigenvalues of the Hamiltoniaa ifiite (but very large)
system to changes in the boundary conditions [121]. Thisigeity turned out to
be conceptually important for the formulation of a scalihgdry for localization
[5]. The main hypothesis of this single-parameter scalivggpty is that, close to the
transition between localized and extended states, thenddslonly be one scaling
variable which depends on the conductivity for the metdlébavior and the local-
ization length for the insulating behavior. This singlegraeter turned out to be a
dimensionless conductance (often calldtbuless conductanaa Thouless num-

ber) defined as

9(N) = j—i, (6.19)

where dE is the average energy shift of eigenvalues of a finite systésize N
due to the change in the boundary conditions, Afdis the average spacing of
the eigenvalues. For localized states and I&g&E becomes very small argiN)
vanishes, while in the metallic regime the boundary coadgialways influence the
energy levels, even in the limiting case of infinite systeiifee introduction of the
Thouless conductance led to the formulation of a simpleigan for the occurrence
of Anderson localizationg(N) < 1. In one and two-dimensional random media this
criterion can be reached for any degree of disorder by jeseasing the size of the
medium, while in higher dimensions a critical thresholdséi

The experimental verification of Anderson localization @& Basy, for example
due to the electron-electron interactions in cases ofreletbcalization, and the dif-
ficult discrimination between localization and absorpiioexperiments of photon
localization. Nevertheless, nowadays the observationrafe#son localization has
been reported in several experiments, a few of which areegitware: (i) light local-
ization in three-dimensional random media [348, 326], t(@nsverse localization
of light for two [302] and one [211] dimensional photonictiegs, (iii) localization
of a Bose-Einstein condensate in an one-dimensional ¢yatantial [46, 287],
and (iv) elastic waves propagating in a three-dimensioisardered medium [176].
In addition, the observation of the metal-insulator tréaosiin a three-dimensional
model with atomic matter waves has been described in [83].
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6.4.2 Diffusion in disordered nonlinear chains

As was discussed in the previous subsection, the presenoacofrelated spa-
tial disorder in one-dimensional linear lattices resuttdhie localization of their
NMEs. An interesting question, therefore, that naturaliiges is what happens
if nonlinearity is introduced to the system. Understandimg effect of nonlinear-
ity on the localization properties of wave packets in disved systems is a chal-
lenging task, which, has attracted the attention of mangaiehers in recent years
[255, 274, 205, 134, 320, 341, 257, 147, 315, 127, 213, 342,258, 48, 49]. Most
of these studies consider the evolution of an initially laed wave packet and
show that wave packets spread subdiffusively for moderaidimearities. On the
other hand, for weak enough nonlinearities, wave packgisayto be frozen over
the complete available integration time, thereby resemgbfinderson localization,
at least on finite time scales. Recently, it was conjectundd81] that these states
may be localized for infinite times on Kolmogorov-Arnold-k&y (KAM) torus-like
structures in phase space. Whether this is true or not resnpin to the present day.

6.4.2.1 Two basic models

In order to present the characteristics of subdiffusiveaging, let us consider two
one-dimensional lattice models. The first one is a variargystem (6.4). It repre-
sents a disordered discrete nonlinear Schrodinger egu@dDNLS) described by
the Hamiltonian function

Hp = Zf||¢||2+g|lll||4—(lll|+1¢|*+llf|*+1¢|), (6.20)

in which ¢4 are complex variableg);” their complex conjugates,are the lattice
site indices ang3 > 0 is the nonlinearity strength. The random on-site energies
&§ are chosen uniformly from the interv V7V, %] with W denoting the disorder

strength. The equations of motion are generateghby dHp /9 (iyy"):

i =y +BIYPY — Y — 1. (6.21)

This set of equations conserves both the energy of (6.2 henornS= S, [y|?.

The second model we consider is the quartic KG lattice (@ld3cribed by the
Hamiltonian )

P §| 1 1
Hk = 7' §U|2+ ZU|4+ m(ulﬂ—ul)z, (6.22)

whereu, andp, respectively are the generalized coordinates and momarsited,
andg are chosen uniformly from the interv@%, %] The equations of motion are
U = —dHk /dy, and yield
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U = —&u —U|3+Viv(ul+1+u|71—2ul)- (6.23)
This set of equations only conserves the enétgf (6.22). The scalar valug > 0
serves as a control parameter of nonlinearity, similgd for the DDNLS case.

ForB =0andy; = A exp(—iAt), (6.21) reduces to the linear eigenvalue problem
(6.18). The width of the eigenfrequency spectriynin (6.18) isAp = W + 4 with
Ay € [—2— V7V,2+ % In the limitH — O (in practice by neglecting the nonlinear
termuf/4) the KG model of (6.22) is reduced (with = A exp(iwt)) to the same
linear eigenvalue problem of (6.18), under the substitigtio = Ww? — W — 2 and
& =W(§ —1). The width of the squared frequen@g spectrum ishx = 1+ viv with
w? € [3,3+ ] Asin the case of DDNLS)V determines the disorder strength.

In the case of weak disord&¥ — 0, the localization length of NMEs is approx-
imated byé& (A,) < &(0) ~ 100/W? [209, 210]. On average the NME localization
volume (i.e. spatial exteny}, is of the order of B (0) ~ 330/W? for weak disor-
der and unity in the limit of strong disord&k — o [210]. The average spacing of
eigenvalues of NMEs within the range of a localization volusgiven byd ~ A /V,
with A being the spectrum width. The two frequency scales A determine the
packet evolution details in the presence of nonlinearity.

In order to write the equations of motion of Hamiltonian &.2n the normal
mode space of the system, we insgirt= 3, A, @, in (6.21), with |, |> denoting
the time-dependent amplitude of thth mode. Then, using (6.18) and the orthogo-
nality of NMEs the equations of motion (6.21) read

Q=A@ +B S Tvviunus @, R s (6.24)

V1,V2,V3

With Ty v, veus = 51 AVIAY 1AL, 1Ay, Deing the so-called overlap integral (see Ex-
ercise 6.3).

To study the spreading characteristics of wave packetssletrder the NMEs
by increasing value of the center-of-norm coordinXie= 3, IA%\I [134, 320,
315, 213]. Then, for DDNLS we follow the normalized norm dgndistributions
zy = |@|?/ ¥ 4 |gu|?, while for KG we monitor the normalized energy density dis-
tributionsz, = E,/ ¥, E, with Ey = A2 /2 + wAZ /2, whereA, is the amplitude
of the vth normal mode andv? its squared frequency. Usually these distributions
are characterized by means of the second momert 5, (v — v)?z, (which quan-
tifies the wave packet’s spreading width), with= ¥, vz,, and the participation
numberP = 1/5, 22, (i.e. the number of the strongest excited modes, )1 An-
other often used quantity is the compactness inflex P?/mp, which quantifies
the inhomogeneity of a wave packet. Thermalized distrdmgihave =~ 3, while
{ < 3indicates very inhomogeneous packets, e.g. sparse (witly froles) or par-
tially selftrapped ones (see [320] for more details).

The frequency shifd of a single site oscillator induced by the nonlinearity for
the DDNLS model igh = B|¢4 |2, while for the KG system the squared frequency
shift of a single site oscillator i®x ~ E;, E; being the energy of the oscillator.
Since all NMEs are exponentially localized in space, eatdct¥ely couples to a
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finite number of neighbor modes. The nonlinear interactayeghus of finite range;
however, the strength of this coupling is proportional te tlorm (energy) density
for the DDNLS (KG) model. If the packet spreads far enough,care generally
define two norm (energy) densities: one in real space; | |? (E;) and the other
in normal mode space, = |@,|? (E,).

Typically, in order to obtain a statistical description bétwave packet dynamics
averaging over hundreds of realizations is performed. Assalt, no strong dif-
ference is seen between the norms (energies) in real andahoratde space, and
therefore, we treat them generally as some characteristini 1n) or energy E)
density. The frequency shift due to nonlinearity is thign~ n for the DDNLS
model, while the square frequency shifidis ~ E for the KG lattice.

6.4.2.2 Regimes of wave packet spreading

Let us now discuss in more detalil the different wave packelugions. For strong
nonlinearities a substantial part of the wave packet istsaffped. This is due to
nonlinear frequency shifts, which will tune the exciteésitmmediately out of res-
onance with the non-excited neighborhood [128, 129]. Thstemce of the self-
trapping regime was theoretically predicted for the DDNL8d®=l in [205] (see
also [320] for more details). According to the theorem state [205], for large
enough nonlinearitiesdb > Ap), single site excitations cannot uniformly spread
over the entire lattice. Consequently, a part of the wavéegtawill remain local-
ized, although the theorem does not prove that the locatiadhi® inhomogene-
ity is constant in time. In fact, partial self-trapping wilccur already fodp > 2
(& = 1/W) since at least some sites in the packet may be tuned outafagse.
The selftrapping regime has been numerically observedifigiessite excitations
[134, 320, 315] and for extended excitations [213, 48], fotlthe DDNLS and the
KG models, despite the fact that the KG system conservestbaliotal energy,
and the selftrapping theorem can not be applied there.

When selftrapping is avoided fap < 2 (& < 1/W), two different spread-
ing regimes were predicted in [127] having different dyneahcharacteristics: an
asymptotic weak chaos regime, and a potential intermesdietag chaos one. The
basic assumption for this prediction is that the spreadfrtgp@wave packet is due
to the chaoticity inside the packet. This practically metlnat a normal mode in a
layer of widthV in the cold exterior of the wave packet—which borders thekptaic
but will belong to the core of the spreading packet at lateet—is incoherently
heated by the packet. Numerical verifications of the existeri these regimes were
presented in [315, 213, 48].

Let us take a closer look at these behaviors by consideritiglitblock” wave
packets, wheré central oscillators of the lattice are excited having theesaorm
(energy). In the weak chaos regime, foe>V andd < d most of the NMEs are
weakly interacting with each other. Then the subdiffusigeeading of the wave
packet is characterized by, ~ t1/3. If the nonlinearity is weak enough to avoid
selftrapping, yet strong enough to ensdre d, the strong chaos regime is realized.
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Wave packets in this regime initially spread faster tharha ¢ase of weak chaos,
with mp ~ t%/2, Note that a spreading wave packet launched in the reginteasfss
chaos will increase in size, drop its norm (energy) denaity, therefore a crossover
into the asymptotic regime of weak chaos will occur at laitees.

We turn our attention now to the calse< V. In this case the wave packet initially
spreads over the localization volureduring a time intervaki, ~ 2m/d, even in
the absence of nonlinearities [127, 213]. The initial ageraorm (energy) density
nin (Ein) of the wave packet is then loweredrérin) ~ ninL/V (E(Tin) ~ EinL/V).
Further spreading of the wave packet in the presence ofmeanities is then deter-
mined by these reduced densities. Note that for singleesitéations [ = 1), the
strong chaos regime completely disappears and the wavepewslves either in
the weak chaos or selftrapping regimes [274, 134, 320, 341].

6.4.2.3 Numerical results

We present now some numerical results obtained in [213] Bigpthie existence and
the main characteristics of weak chaos, strong chaos, tdssaver between them
and the selftrapping regime (Fig. 6.10). These results witained by considering
compact DDNLS wave packets tat 0 spanning a widtl. centered in the lattice,
such that withirL there is a constant norm density and a random phase at each sit
(outside the volumé the norm density is zero). In the KG case, this corresponds to
exciting each site in the width with the same energy densify,= H/L, i.e. setting
initial momenta top, = ++/2E with randomly assigned signs. Ensemble averages
over disorder were calculated for 1000 realizations With= 4, whileL =V =

21, and system sizes of 1062000 sites were considered. For the DDNLS, an
initial norm density ofn;, = 1 was taken, so thalp = 3. The values of3 (E for

KG) were chosen to give the three expected spreading regmegsectivelyB €
{0.04,0.72,3.6} andE € {0.01,0.2,0.75}.

Let us describe the results of Fig. 6.10 referring mainyhssDDNLS model. In
the regime of weak chaos we see a subdiffusive growth,cdiccording tam, ~ t®
with o ~ 1/3 at large times. In the regime of strong chaos we observeerqier ~
1/2for 10° <t < 10* (KG: 10* <t < 10°). Time averages in these regions over the
green curves yieldr ~ 0.49+ 0.01 (KG: 0.51+ 0.02). With spreading continuing
in the strong chaos regime, the norm density in the packeedses, and eventually
satisfiesdp < dp (& < dk). This results in a dynamicarossoverto the slower
weak chaos subdiffusive spreading. Fits of this decay stdhata ~ 1/3 at 13° <
t < 10 for both models. In the regimes of weak and strong chaos dimpactness
index at largest computational timesdisz 2.85+ 0.79 (KG: 2.74+0.83), as seen
in the blue and green curves of the insets of Fig. 6.10. Thianme¢hat the wave
packet spreads, but remains rather compact and thermé{jize).

Numerical studies of several additional models of disazdemonlinear one-
dimensional lattices demonstrate that in the presencerdimearities subdiffusive
spreading is always observed, so that the second momens gritially asm, ~ t¢
with o < 1, showing signs of a crossover to the asymptotic~ t1/2 law at larger
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log,, t log,, t

Fig. 6.10 Upper row: Average log of second moments (inset: averaggaotness index) vs. log
time for the DDNLS (KG) on the left (right), foww = 4, L = 21. Colors correspond to the three
different regimes: (i) weak chaos—blyg = 0.04 (E = 0.01), (ii) strong chaos—qgreeif§ = 0.72

(E = 0.2), (iii) self-trapping—red,3 = 3.6 (E = 0.75). The respective lighter surrounding areas
show one-standard-deviation error. Dashed lines are teghie eye to- t1/3, while dot-dashed
lines are guides for t1/2. Lower row: Finite difference derivatives(logt) = d (logmy) /dlogt

for the smoothedn, data respectively from above curves (after [213]).

times [48, 213]. Remarkably, subdiffusive spreading wa® albserved for large
disorder strengths, when the localization volume (whicfinés the number of in-
teracting partner modes) tends to one [48]. Such resul{ssstifhe conjecture that
the wave packets, once they spread, do so up to infinite timesubdiffusive way,
bypassing Anderson localization of the linear wave equatidlevertheless, the va-
lidity of this conjecture is still an open issue.

Itis worth-mentioning that when the nonlinearity strenigthds to very small val-
ues, waiting times for wave packet spreading of compadalrékcitations increase
beyond the detection capabilities of current computatito@s. The corresponding
question of whether a KAM regime can indeed be approacheditd fionlinearity
strength was addressed in [181], but remains still unareiver
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Exercises

Exercise 6.1.(a) Identify all fixed points of the 2-dimensional map (6.5)fanc-
tions of the parameters andy. Linearize the equations of the map about them and
compute the eigenvalues and eigenvectors of the lineaniegxlin every case, thus
determining the stability of each point.

(b) Choosew andy values such that the origin is a saddle, place many initia} co
ditions on the corresponding eigenvectors and trace ouenaally the stable and
unstable manifolds emanating out of the pgi0) in that case (note that to follow
the stable manifold you will need to use the equations ofrtkierse map).

(c) Computing as accurately as possible one of their prinmta@grsections locate
one homoclinic point, whose (forward and backward) itersdishould enable you
to compute one of the simple breathers of the DNLS equation.

Exercise 6.2.(a) Substituting (6.2) in the KG equation of motion (6.1) iderthe
infinite dimensional map satisfied by the Fourier coeffigeii(k) for a periodic
solution of the system with frequenay. Using these equations prove that the origin
is of the saddle type provided the following condition iSsf&d
2.2

C(k) = 2+ % > 2, (6.25)
thus showing that breathers can exist in the KG system withuencyw, = w if
w?k? > K +4a for all k= 1,2,.... It follows, therefore, that if this condition is
satisfied fork = 1 it will also hold for all otheik.
(b) Referring to (6.7), withC = C(1), consult reference [63] and use the method
proposed in Exercise 6.1 to compute homoclinic orbits ferahbic map (6.7) that
approximate simple breathers of the KG system. ConsultRisblem 6.1 below to
see how to do this in a systematic way.

Exercise 6.3.Substitutingyy = 5, Ay @ in (6.21), and using (6.18) and the or-
thogonality of NMEs, prove that the equations of motion af DADNLS system
(6.20) in normal mode space is given by (6.24).

Problems

Problem 6.1.(a) Consider the “soft spring” KG potential

1., 1
V(x) = 5K~ ZX4' (6.26)
Use this form oV (x) in the equations of motion (6.1) to search for periodic solu-
tions of the form (6.2) withwy, = w, equating coefficients @xp(ikwt). Thus, derive
the following algebraic system for the coefficieAgk)
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Aoia A0 200 =COAK) ¢ 5SS Anlla) (ko)) Kot ko =k

(6.27)
foreveryk=1,2 ..., M, with

K — k2w?
+7

C(k) =2 -

(6.28)
assuming that the Fourier coefficiedtg k) decrease sufficiently rapidly with, so
thatM of them are enough to describe the dynamics. As explaine@dn 8.2, a
necessary condition for the existence of breathers islhedtitial solution of (6.27),
i.e. An(k) =0, for alln,k, be a saddle point of theM>-dimensional map (6.27).

(b) Linearize (6.27) near the trivial point and prove thas ia saddle with aim-
dimensional stable and an -dimensional unstable manifadd only if |C(k)| > 2
forallk=12,...,M. Show that the smallest value afthat makes it possible for
a breather with this frequency to existais= /K — a(C(1) — 2). Consider now
the simple approximation that the breather is represengeal §ingle mode only,
i.e. un(t) = 2An(1)coswt, for —M < n < M, and scale the Fourier coefficients by
An(1) = /oA, to obtain the map

Ani1+An 1+ C(1)A = —3A%, (6.29)

(see also (6.7)).

(c) Analyzing (6.29), show that the only possibility for hthers isC(1) > 2,
with frequencyw < v/K belowthe phonon band. Explain why the parameter range
for breathers of (6.26) is considerably more limited thaa ‘thard spring” case
(see (6.1)), whereo > /K +4a. Write the above map in the two-variable form
An 1= —Bn—C(1)A,—3A3, By, 1 = A, and determine the eigenvectors of its lin-
earized equations about the origh 0). Now use the method described in Exercise
6.1 to trace out numerically the invariant manifolds of thigio, locate their inter-
sections and compute some of the breathers and multibrea8tart with accurate
representations of their,(0) = 2An(1) andun(0) = 0 initial conditions and inte-
grate the equations of motion (see (6.1)) for long times temeine numerically
the stability of these solutions, under small changes af thigial conditions.



Chapter 7

The Statistical Mechanics of Quasi-Stationary
States

Abstract This chapter adopts an altogether different approach tetthtly of chaos
in Hamiltonian systems. We consider, in particular, proltgtdistribution func-
tions (pdfs) of sums of chaotic orbit variables in differeegions of phase space,
aiming to reveal the statistical properties of the motiothiese regions. If the orbits
are strongly chaotic, these pdfs tend to a Gaussian ands$tensyuickly reaches an
equilibrium state described by Boltzmann-Gibbs statidtinechanics. There exist,
however, many interesting regimes of weak chaos charaetkby long-lived quasi-
stationary states (QSS), whose pdfs are well-approxintgtgeGaussian functions,
associated with nonextensive statistical mechanics.igndapter, we study such
QSS for a number o dof FPU models, as well as 2D area-preserving maps, to
locate weakly chaotic QSS, investigate the complexity efrtdynamics and dis-
cover their implications regarding the occurrence of dyitainphase transitions
and the approach to thermodynamic equilibrium, where gnisrgqually shared by
all degrees of freedom of the system.

7.1 From Deterministic Dynamics to Statistical Mechanics

So far in these lectures we have treated the solutions of laran systems as in-
dividual trajectories (or orbits), evolving in a deternsiti¢ way, according to New-
ton’s equations of motion. In other words, we have systezalyi chosen initial
conditions locally in various areas of phase space and hawghs to characterize
the resulting orbits as* ‘ordered” or “chaotic”, aiming taderstand the dynamics
more globally in phase space. Clearly, however, if we safiowish to shift our
attention from local to global dynamics, such charactéions are too simplistic.
As we have already seen in earlier chapters, order and chaagadally much
more complex than what their local manifestations mighaiéntn Chap. 5, for
example, we realized thatdimensional invariant tori o dof Hamiltonians, with
s< N, owing to their localization properties in Fourier spacentout to be very im-
portant in our attempt to understand the (global) phenomefiéPU recurrences.

117
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Indeed, quasiperiodic orbits of as few ss- 2,3,... (rationally independent) fre-
quencies were found to dominate the dynamics at low enetgitee extent that,
even when these orbits become unstable and the correspdodibreak down, they
still represent quasi-stationary states, which preclhdeonset of energy equiparti-
tion for very long times.

A different kind of localized solutions (this time in configuion space), known
as discrete breathers, was discussed in Chap. 6. They wsvefalnd to hin-
der energy equipartition, through the persistence of stpbliodic oscillations, in
which very few particles participate with appreciable aitoples! Indeed, discrete
breathers are observed in many cases to be surrounded ldifeswnsional tori and
clearly constitute one more example where local order inftee global dynamics
in multi-dimensional Hamiltonian systems.

One may, therefore, well wonder: since there do exist hitiiaal levels of order,
could there also exist hierarchies of disorder, where ébaobits are confined, for
very long times, in limited domains of phase space? Suclmegimay be charac-
terized, for example, by small LCEs and weakly chaotic dyicantompared with
regimes of strong chaos, which are larger and possess higiies. As we will show
in the present chapter, such distinction can indeed be rbatiele must be prepared
to combine our deterministic methods with the probabdiafpproach of statistical
mechanics.

As is well-known, the statistical analysis of dynamicaltsyss has a long history.
Probability density functions (pdfs) of chaotic orbits baween studied for many
decades and by many authors, aiming to understand thetioarfsbm deterministic
to stochastic (or ergodic) behavior [11, 21, 311, 269, 282, 287, 293, 294, 120,
188]. In this context, the fundamental question that aregescerns the existence
of an appropriate invariant probability density (or ergoglieasure), characterizing
phase space regions where solutions generically exhibtahdynamics. If such
an invariant measure can be established for almost alhimitinditions (i.e. except
for a set of measure zero), one has a firm basis for studyingytem at hand from
a statistical mechanics point of view.

If, additionally, this invariant measure turns out to be atowous and suffi-
ciently smooth function of the phase space coordinates;am@woke the Boltzmann-
Gibbs (BG) microcanonical ensemble and attempt to evahlatelevant quantities
at thermal equilibrium, like partition function, free eggrentropy, etc. On the other
hand, if the measure is absolutely continuous (as e.qg. icabe of the so-called Ax-
iom A dynamical systems), one might still be able to use tlim#dism of ergodic
theory and Sinai-Ruelle-Bowen measures to study the staliproperties of the
model [120].

In all these cases, viewing the values of one, or a linear @watibn of com-
ponents of a chaotic trajectory at discrete timigsh = 1,...,N as realizations of
several independent and identically distributed randoriak&esX, and calculating
the distribution of their sums in the context of the Centrahit Theorem (CLT)
[285] one expects to find a Gaussian, whose mean and variaadbase of the
Xn's. This is indeed what happens in many chaotic dynamicakgsys studied to
date which are ergodic, i.e. almost all their orbits (exdepa set of measure zero)
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pass arbitrarily close to any point of the constant energyifol, after sufficiently

long times. What is also true is that, in these cases, atoeast CE is positive, sta-
ble periodic orbits are absent and the constant energy oidisfcovered uniformly
by chaotic orbits, for all but a (Lebesgue) measure zerofgatt@l conditions.

But then, what about chaotic regions of limited extent, argies where the
MLE is “small” and stable periodic orbits are present, whizdends of invariant
tori and sets of cantori around them occupy a positive measubiset of the energy
manifold? In such regimes of weak chaos, it is known that nabiyts “stick” for
long times to the boundaries of these islands and chaojéctoaies diffuse slowly
through multiply connected regions in a highly non-unifamayy [8, 92, 252]. Such
examples occur in many physically realistic systems stuli¢he current literature
(see e.g. [319, 134, 180, 320)).

These are cases where exponential separation of neartipaslis not uniform,
exponential decay of correlations is not generic and cbaokits can no longer be
viewed as independent and/or identically distributed camdariables. What kind
of pdfs would we expect from a computation of their sums, if @aussians? This
type of Hamiltonian dynamics is strongly reminiscent of mnaramples of physical
systems governed by long range interactions, like seMiiing systems of finitely
many mass points, interacting black holes and ferromagspiin models, in which
power laws are dominant over exponential decay [335].

7.1.1 Nonextensive statistical mechanics agdsaussian pdfs

As we also discussed in Sect.1.4, multi-particle systenmnigeto different univer-
sality classes, according to their statistical propersiesquilibrium. In the most
widely studied class, if the system can be at any onie-ofl, 2, ..., W states with
probability p;, its entropy is given by the BG formula

W
SBG:—k_Zpiln pi, (7.1)

wherek is Boltzmann'’s constant, under the constraint

W
; pi=1 (7.2)

As is well-known, the BG entropy iadditivein the sense that, for any two in-
dependent systen#s andB, the entropy of their sum is the sum of the individual
entropies, i.eSgg(A+ B) = S36(A) + Ssa(B). It is alsoextensive as it grows lin-
early with the number of ddfl, asN — . These properties are associated with the
fact that different parts of BG systems are highly uncotesland their dynamics is
statistically uniform in phase space.



120 7 The Statistical Mechanics of Quasi-Stationary States

There is, however, an abundance of physical systems clawzstt by strong cor-
relations, for which the assumptions of extensivity anditadty are not generally
valid [335]. In fact, as we explain in this chapter, Hamiltm systems provide a
wealth of examples governed by such complex statisticgaaity near the bound-
aries of islands of ordered motion, where orbits “stick” ¥ery long times and the
dynamics becomes very weakly chaotic. It is for this kinditfations that Tsallis
proposed the entropy formula

1Y
Sy=k=—2=P0 ity § =1, (7.3)
q-1 i; |

that depends on an index for a set ofW states with probabilitieg; i = 1,...,W,
obeying the constraint (7.2). Th& entropy is not additive, Sinc&(A+B) =
S(A) + S(B) + k(1 — 0)S(A)S(B) and generally not extensive. The pdf replac-
ing the Gaussian in this type of nonextensive statisticalmagics is the-Gaussian
distribution

P(s) = aexp,(—Bs’) = a[l— (1—q)Bsz] o (7.4)

obtained as an extremum (maximum éps 0 and minimum foig < 0) of the Tsallis
entropy (7.3), under appropriate constraints [335]. §hadex satisfies k q <

3 to make (7.4) normalizable§ is an arbitrary parameter areda normalization
constant. Note that in the limg — 1 (7.4) tends to the Gaussian distribution, i.e.
expy,(—Bx%) — exp(—Bx?).

The above approach does not constitute, of course, the oskilge choice for
analyzing the statistics of strongly correlated systemshatmal equilibrium. As
Tsallis points out in his book [335], various entropic forhes/e been proposed by
different authors as alternatives to the BG entr@gyhowever, turns out to enjoy a
number of important properties, also sharedhy, that appear to render it superior
to other choices. For example, it satisfies uniquenesseheoanalogous to those of
Shannon and Khinchin obeyed By and is Lesche stable (i.e. robust under small
variations of the state probabilitigs) and concave for altj > 0. By contrast, the
Rényi entropy, for example, defined by [284]

W
$ - kai;lpi7 (7.5)
1-q
although additive, fails to satisfy many other importarguieements of entropic

forms like concavity and Lesche stability [335].

What we wish to do in this chapter is study the complex stesisbf several
multi-dimensional Hamiltonian systems involving eitheramest neighbor interac-
tions or long range forces. We focus on weakly chaotic regiared demonstrate
by means of numerical experiments, in the spirit of the Chat fpdfs of sums of
orbit componentdo notrapidly converge to a Gaussian, but are well approximated,
for long integration times, by thg-Gaussian distribution (7.4). At longer times, of
course, chaotic orbits generally leak out of smaller regitinlarger chaotic seas,
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where obstruction by islands and cantori is less dominashtta® dynamics is more
uniformly ergodic. This transition is signaled by tpéndex of the distribution (7.4)
decreasing towardg = 1, which represents the limit at which the pdf becomes a
Gaussian.

Thus, in our modelsg-Gaussian distributions represeqntasi-stationary states
(QSS) that are often very long-lived, especially insideiritrchaotic layers near
periodic orbits that have just turned unstable. This suiggésat it might be useful
to study these pdfs (as well as their associajgdlues) for sufficiently long times
and try to derive useful information regarding these QS8atliy from the chaotic
orbits, at least for time intervals accessible by numeiitagration. QSS have also
been studied in coupled standard maps and the so-calledltdaian Mean Field
(HMF) model in [23, 24], but not from the viewpoint of sum dibutions.

One must be very careful, however, with regard to the kindiotfions one uses
to approximate these pdfs. While it is true tiggBaussians offer, in general, a quite
accurate representation of QSS sum distributions, theyhatr¢he only possible
choice. In fact, it has already been shown in certain systbatsanother so-called
“crossover” function [335, 80, 336] can describe the sante @dith better accuracy.
As pointed out in many references [111, 170, 169], there ases where other
functions can be used to approximate better sum distribsitad weakly chaotic
QsSs.

7.2 Statistical Distributions of Chaotic QSS and Their
Computation

Let us start again with an autonomaddsiof Hamiltonian function of the form

H=H(a(t),pt)) = H(a(t),....an(t), p(t),....pn(L)) =B (7.6)

where (gk(t), pk(t)) are the positions and momenta respectively representag th
solutions in phase space at tim&Vhat we wish to study here is the statistical prop-
erties of these solutions in regimes of weakly chaotic nmtwhere the Lyapunov
exponents [31, 32, 120, 313] are positive but very smallhSittiations arise often
when one considers orbits which diffuse into thin chaotyela and wander through

a complicated network of “islands”, sticking for very lorighes to the boundaries
of these islands on a surface of constant energy.

There are several interesting questions one would likekdase: How long do
these weakly chaotic states last? Assuming they are qteigsary, can we de-
scribe them statistically by observing some of their clmotbits? What type of
distributions characterize these QSS and how could oneembiimem to the actual
dynamics of the corresponding Hamiltonian system? Can wethese statistical
considerations to understand importphysicalproperties of system (7.6) like en-
ergy equipartition? Is there any connection between thestta of these QSS and
the breakdown of certain localization phenomena discuissedrlier chapters?
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The approach we shall follow is in the spirit of the well-kno@entral Limit
Theorem [285] and is described in detail in [18]. In part&cuHamilton’s equations
of motion will be solved numerically for a large set of inltieonditions to con-
struct distributions of suitably rescaled sumsh\bfvalues of a generic observable
ni=n(),i=1,...,M, which depends linearly on the components of the solution.
If these are viewed as different random variables (in thet livh — o), we may
evaluate their sum

St = inﬁ” (7.7

for j = 1,...,N;¢ initial conditions. Thus, we can analyze the statisticshafse
sums, centered about their mean value and rescaled by thedlesd deviatiomy,,
writing them as

N.
D Liap iy (& 5 1 XE
W= oo (S0 -a) = o (i;n. Ne 220 (7.8)

over theN;. initial conditions.
Plotting now the normalized histogram of the probabiliﬁég(\)l)) as a function

of s§\,‘,), we compare our pdfs with various functional forms foundha titerature.
If the variables are independent and identically distelyts explained in the pre-
vious section, we expect a Gaussian. What we find, howeveraimy cases, is that
the data is much better approximated by-@aussian function of the form

1

P(sy)) = aexp,(—Bsy?) = a[l— (1—Q)F55§vj|)2} a (7.9)

(see (7.4)). The normalization of this pdf is achieved byirsgt

T
B _a\/ﬁm, (7.10)

wherel™ is the Eulen” function, showing that the allowed valuesgpdire 1< g < 3.
Let us now describe the numerical procedure one may usedolatd these pdfs.
First, we specify an observable denoted{y) as one (or a linear combination) of
the components of the position vectyt) of a chaotic solution of Hamilton;s equa-
tions of motion, located initially atq(0),p(0)). Assuming that the orbit visits all
parts of a QSS during the integration interva® < t;, we divide this interval into
Njc equally spaced, consecutive time windows, which are loraigh to contain
a significant part of the orbit. Next, we subdivide each sugfdew into a number

M of equally spaced subintervals and calculate the éﬁnof the values of the
observable (t) at the right edges of these subintervals (see (7.7)). Inatais we
treat the point at the beginning of every time window as a metial condition and
repeat this proced. times to obtain as many sums as required to have reliable
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statistics. Consequently, at the end of the integrationcevapute the average and
standard deviation of the sums (7.7), evaluateNerescaled quantmeéVI and
plot the hlstogranP(s,\A)) of their distribution.

As we shall see in the next sections, in regions of weak chesetdistributions
are well-fitted by aj-Gaussian of the form (7.9) for fairly long time intervalsowt
ever, for longer times, the orbits often diffuse to wider @dons of strong chaos and
the well-known form of a Gaussian pdf is recovered.

7.3 FPUmmode Under Periodic Boundary Conditions

One very popular Hamiltonian to which we can apply our apphos the 1-
dimensional lattice ofN particles with nearest neighbor interactions governed by
the FPU$ Hamiltonian [124]

N
1
Z 12+Z qu_qJ +Zﬁ(qj+l_qj)4 =E (7.11)

I\)IH

under periodic boundary conditiongj(t) = g;(t), j = 1,...,N, which we have
studied extensively in this book. More specifically, we &lfiagét concentrate on
orbits starting near a well-known NNM of this system callbé t-mode, which
has been studied in detail in several publications [69, 208, 70, 16, 221]. This
simple periodic solution is defined by (3.17)

qit) = —gj+1(t) =qt), j=1,...,N (7.12)

with N even.
Our aim here is to investigate chaotic states near this atl#nergies where it
has just become unstable. To this end, let us choose as aenvabte the quantity

n(t) =ay(®+ay () (7.13)

which satisfies) (t) = 0 at ther-mode. Thus, starting close to (7.1B)t) remains
near zero at energies where the mode is stable and grows initondg at energies
where ther-mode has destabilized, i.E.> Ey. To compare with results published
in the recent literature (see e.g. [221]), we first consideicasédN = 128 and3 = 1,

for which Ey &~ 0.0257 [16] and take as our total energy= 0.768 (i.e.e =E/N =
0.006), at which ther-mode is certainly unstable. The accuracy of the integnatio
performed in [18] is determined at each time step by reqgittratH (q(t),p(t)) is
within 10~° from the energy value set initially at tinte= 0.

As we see in Fig. 7.1, when the total integration titpés increased, the pdfs
(solid curves) approach closer and closer to a Gaussiangiéhding to 1. More-
over, this seems to be independent of the valuagofind/orM, at least up to the
final integration timet; = 10°. For example, when the parametés andM in
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Fig. 7.1(b) are varied, one obtaigsGaussians of very similar shape withetween

1.51 and 1.67. It is important to note, however, that the sdata may be better
fitted by other similar looking functions: For example, igFy.1(d) the numerical
distribution (solid curve) is better approximated by thecatied “crossover” func-
tion [335, 80, 336]

If,(sl(vjl)): 1 - _11,a1,aq20andq>1, (7.14)
{1- 2+ Bexpi(a-aus)?}

wherea; ~ 0.009,aq ~ 2.849 andq~ 2.179 with x2 ~ 0.00008, in contrast to the
X2 ~ 0.0007 obtained by fitting the same distribution by-&aussian withg ~
1.818 (see Fig. 7.1(a)). Note thgt denotes the well-known test of reliability of a
given statistical hypothesis, see e.g. [161]. Equatiob4)represents a “crossover”
betweeng-Gaussians and Gaussians and takes into account finiteasideti(ne)
effects reflected in the lowering of the tails of the correxging distributions.

Regarding this QSS, itis interesting to note that when tted firtegration time is
increased beyongl ~ 4 x 107, one observes that the LCEs monotonically increase
and attain bigger values than those computed up 194 x 107 (see Fig. 7.2(b)).
This may signify that the trajectories drift away from thegiorhood of therr-
mode and enter a larger chaotic subspace of the energy rithnifo

Similar results for this system have also been obtained lgr@uthors using an
analogous methodology [221]. They too find that if one ta{s(esloﬁ as the longest
integration time, one obtains pdfs that are well approxaddtyg-Gaussians. Their
transitory character, however, is revealed when one iategrup tot; = 10’ or
longer, when the pdfs are clearly seen to approach a Gaussian

7.3.1 Chaotic breathers and the FPio-mode

As we discovered in Chap. 5, physical properties like eneqipartition among
all degrees of freedom have been at the center of many igagisins of FPU sys-
tems. In one such study, focusing on tirenode under periodic boundary conditions
[108], the authors studied the time evolution of an FR\d¢hain towards equipar-
tition using initial conditions close to that mode. They eb&d that at energies
well above its threshold of destabilization, a remarkabtalization phenomenon
occurs: A large amplitude excitation spontaneously oc¢strengly resembling a
discrete breather), which has a finite lifetime and movesttally along the chain,
keeping all the energy restricted among very few partidiésreover, numerical
results suggest that these “chaotic” breathers break dasibefore the system
reaches energy equipartition.
As pointed out in [108], this phenomenon can be monitoredvajyuating the
function SN g2
t) =N-&=L"_ 7.15
Co(t) SN En2 (7.15)
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Fig. 7.1 Plot in linear-log scale of numerical (solid curve}Gaussian (dashed curve) and Gaus-
sian (dotted curve) distributions for the FPWmode with periodic boundary conditions, with
N =128,8 =1 andE = 0.768 > Ey ~ 0.0256. Panel (a) corresponds to final integration time
tf = 10° usingNjc = 10* time windows andV = 10 terms in the computation of the sums. Here,
the numerical fitting with @-Gaussian giveg ~ 1.818 with x2 ~ 0.0007. Panel (b) corresponds
tot; = 10°, Njc = 10* andM = 100 and the numerical fitting givep~ 1.531 with x? ~ 0.0004.
Panel (c) corresponds tp= 10°, Nj. = 10° andM = 1000. It is evident that the numerical dis-
tribution (solid curve) has almost converged to a Gausslatt€d curve). Panel (d) compares the
same pdf as in panel (a) with th&function of (7.14) fora; ~ 0.009, a4 ~ 2.849 andq ~ 2.179
with x2 ~ 0.00008 (dashed curve) (after [18]).

whereE, denotes the energy per site

En = 20+ 5V (Gnia — ) + 5V (Gn— 1) (716)
with 1 <n <N andV (x) = %x2+ %x“. SinceCy(t) = 1, if En = E/N at each siten
andCy(t) = N if the energy is localized at only one site, it can serve asfécient
indicator of energy localization in the chain.

In their experiments, these authors udéd- 128,03 = 0.1, E ~ 42.2707 well
above the lowest destabilization energy of thenodeEy ~ 0.25725 and plotte@y
versud. Distributing evenly the energy among all sites of thenode at = 0, they
observed thaty initially grows to relatively high values, indicating thite energy
localizes at a few sites. After a certain time, howe@grreaches a maximum and
decreases towards an analytically derived asymptoti@@a: 1.795 [108], which
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is associated with the breakdown of the chaotic breathertlamdnset of energy
equipartition in the chain.

In [18], the same study of the-mode was performed at a lower energy=
0.768> Ey ~ 0.0257 (keeping3 = 1, N = 128) and QSS were approximated by
g-Gaussian distributions, which are related to the lifetioiehaotic breathers as
follows: In Fig. 7.2(a)Cy is plotted as a function of time, verifying indeed that it
grows over a long intervat & 1.8 x 10P) after which it starts to decrease and eventu-
ally tends to the asymptotic valii® ~ 1.795 associated with energy equipartition.
In Fig. 7.2(b) it is shown that the four biggest LCEs decreaserds zero until
aboutt ~ 4 x 10’, but then start to increase towards positive values inidigahe
unstable character of themode.
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Fig. 7.2 (a) Plot ofCp, (7.15), as a function of time for the unstable<£ 0.768 > Ey ~ 0.0257)
-mode withf3 = 1 andN = 128. The grey curve corresponds to the time average of the sol
curve. (b) Log-log plot of the four biggest LCEs as a functafriime for the same parameters as
in panel (a) (after [18]).

In Fig. 7.3 we present the instantaneous eneigiexf all N = 128 sites at differ-
ent times, together with their associated sum distribgtiéts shown in Fig. 7.3(a),
the energy becomes localized at only a few sites, demoimgjrifie occurrence of a
chaotic breather at times of order1g t < 10°. Next, Fig. 7.3(b) shows that when
the time is further increased (e.g.tte= 6 x 10°), the chaotic breather is destroyed
and the system reaches equipartition.

Comparing Figs. 7.1, 7.2(a) and 7.3, we deduce that whilelia@tic breather
still exists, a QSS is observed fitted tyGaussians witlg) well above unity, as seen
in Fig. 7.3(c). However, as the chaotic breather breaks down> 10° and energy
equipartition is reached (see Fig. 7.3(lo)};» 1 andg-Gaussian distributions rapidly
converge to Gaussians (see Fig. 7.1(c)) in full agreemehtwhat is expected from
BG statistical mechanics.

In Fig. 7.3(d) we plot estimates of thevalues obtained, when one computes
chaotic orbits near the-mode at this energy density= E/N = 0.006. Remarkably
enough, even though these values have an error bar of atidupercent due to the
different statistical parameteks, N;, used in the computation, they exhibit a clear
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Fig. 7.3 In panel (a) at = 107, near the maximum ofq(t) (see Fig. 7.2(a)), we see a chaotic
breather. In panel (b) at= 6 x 10°, this breather has collapsed and the system has reached a sta
whose distribution is very close to a Gaussian, as implieghdly by the pdf shown in Fig. 7.1(c)
att = 10%. Note the scale difference in the vertical axes. Panel (t)=al0’ shows that the sum
distribution, near the maximum of the chaotic breathertilsauite close to ag-Gaussian with

g~ 2.6. Panel (d) presents an estimate ofdliedex at different times, which shows that its values
on the average fall significantly closer to 1 for 107 (after [18]).

tendency to fall closer to 1 fdr> 10’, where energy equipartition is expected to
occur.

Itis indeed a hard and open problem to determine exactly lypipartition times
Teq scale with the energy density=E/N and other parameters (li&), particu-
larly in the thermodynamic limit, even in 1-dimensional FRittices. Although it
is a question that has long been studied in the literatur4,[128, 38, 26, 35], the
precise scaling exponents by whitgqdepends o, 3, etc. are not yet precisely
known for general mode excitations.

It would be very interesting if oug values could help in this direction. In fact,
carrying out more careful calculations, as in Fig. 7.3(tlpther values of the spe-
cific energy, e.ge = 0.04 (see Fig. 7.4) and = 0.2, one findg plots that exhibit a
clear decrease to values close to 1Teg~ 7.5 x 10° andTeq~ 7.5 x 10* respec-
tively, approximately where the corresponding chaoti@birers collapse. Still, even
though these results are consistent with what is known iditdr@ture, the limited
accuracy of the above approach does not allow one to say Bomgeaheaningful
about scaling laws, as the system tends to equilibrium.
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Fig. 7.4 Plot of q values as
a function of time for energy

densitye =0.04, i.e.E=5.12 3
(dashed curve) for the-mode
of an FPU periodic chain with 25T ]

N = 128 particles an@ = 1.
The dotted and solid curves
show error bars in the form of
plus and minus one standard
deviation. In agreement with
other studies the transition to 05 |- 1
values close t@ = 1 occurs ‘ ‘ ‘
here affeq~ 7.5x 10° (after 0 2510° 510° 7510° 107
[18]). !

g-entropic parameter

7.4 FPU SPO1 and SPO2 Modes Under Fixed Boundary
Conditions

Let us now examine the chaotic dynamics near NNMs of the FRitesy under
fixed boundary conditions, i.€p(t) = gn1(t) = 0. In particular, we first evaluate
pdfs of sums of chaotic orbit components near the SPO1 me@e(819)), which
keeps one patrticle fixed for every two adjacent particledlasng with opposite
phase. This mode is defined fdrodd by

Bjt) =0,  Goj-1(t) = —Gj1(t), j = 17---,NTl- (7.17)

As shown in Fig. 7.5, the chaotic region close to this solufi@hen it has just
become unstable) appears for a long time isolated in phase $ppm other chaotic
domains. In fact, one finds several such domains, embeddeidimneach other. For
example, in the casd = 5 andf3 = 1.04, a “figure eight” chaotic region appears
on the surface of sectiom{, p;) of Fig. 7.5 computed at times whep = 0 (and
ps > 0) at the energ¥ = 7.4. Even though the SPO1 mode is unstable (depicted as
the saddle point at the middle of this surface of sectionjtediarting sufficiently
nearby remain in its vicinity for very long times, formingentually the thin blue
“figure eight” at the center of the figure. Starting, howewatmpoints a little further
away a more extended chaotic region is observed, plotteddmngpoints, which
still resembles a “figure eight”. Choosing even more distaittal conditions, a
large scale chaotic region plotted by red points becomeieavin Fig. 7.5.

Itis, therefore, reasonable to regard these differentahyce behaviors near the
SPO1 mode as QSS and characterize them by pdfs of sum ditngas explained
in Sect. 7.2. The idea behind this is that orbits startingailty at the immediate
vicinity of the unstable SPO1 mode behave differently thersé lying further away,
since the latter orbits have the ability to explore moreamifly parts of the constant
energy surface. Thug;Gaussian-like distributions with< q < 3 are expected near
SPO1, while for orbits starting sufficiently far the distritons we expect to find are
Gaussians witly — 1.
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Fig. 7.5 The “figure eight” chaotic region (blue color) is observed &m initial condition at a
distance close to the unstable SPO1 mode (depicted as ttie gamint atgs = 0 andpz > 0). A
slightly more extended “figure eight” region (green poirgsgurs for an initial condition a little
further away and a large scale chaotic region (red poinisg¢sfor an initial condition even more
distant on the surface of sectioqy (p;) computed at times whegg = 0. Orbits are integrated up
tot; = 10° usingE = 7.4,N = 5 andp = 1.04 (after [18]).

To test the validity of these ideas, let us choose the qyantit

n(t) = qu(t) +as(t) (7.18)

as our observable, which is exactly equal to zero at the SPRitL Bollowing what
was presented in Sect. 7.2, we now study the motion relatéaidedifferent initial
conditions as a result of integration over longer and lotigees, during which an
orbit passes through all the different stages depicteddgn Fb. In particular, in
Fig. 7.6(a), we see the surface of section created by thectaayy starting close to
the NNM and integrated up tp = 10° while in the following two panels we see the
same surface of section computed for final integration tiofi¢s= 10’ andty = 10°
respectively. The parameters are the same as in Fig. 7.5.

Clearly, as the integration time increases, orbits stgrtiose to the unstable
SPO1 mode, eventually wander over a more extended part eépace, covering
gradually all of the energy surface when the integratioretimsufficiently large
(e.g.tf = 10°).

An important question arises here: Are these behaviorscteflen the statis-
tics associated with these trajectories? The answer tgjthgstion is presented in
Figs. 7.6(d)-(f). In particular, Fig. 7.6(d) shows in limdag scale the numerical
(solid curve),g-Gaussian (dashed curve) and Gaussian (dotted curvepdigins
for the initial condition located closest to SPO1, using 10°, Nj. = 10* time win-
dows andM = 10 terms in the computations of the sums. In this casgGaussian
fitting of the data gives ~ 2.785 with x? ~ 0.000 31. This distribution corresponds
to the surface of section shown in Fig. 7.6(a). If one noweases; by two orders
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Fig. 7.6 (a) The(qy, p1) surface of section of an orbit integrated upifte- 10° and starting close
to the unstable SPO1 orbit f0f =5 andf3 = 1.04 at energyE = 7.4. (b) and (c) are same as
(a) but forty = 107 andt; = 108 respectively. (d)-(f) Plots in linear-log scale of numati¢solid
curve), ofg-Gaussian (dashed curve) and Gaussian (dotted curve) &itkal conditions of (a)-
(c) respectively. In particular: (d) is foy = 10°, Njc = 10* andM = 10, (e) fort; = 107, N = 10°
andM = 1000 terms, and (f) fof = 10°, N = 10° andM = 1000 (after [18]).

of magnitude (see panel (f)) usiiNg, = 10°, M = 1000 and performs the same kind
of fit one getsy ~ 2.483 with x2 ~ 0.00047.

It is important to emphasize, however, that the lower pasgisj of the solid
curve distribution of Fig. 7.6(e) are not fitted well bygaGaussian. This suggests
that by increasing the integration time, the initial pdfeaka form that may well
be approximated by other types of functions, like e.g. (¥.THis distribution cor-
responds to the surface of section of Fig. 7.6(b). By indrepthe time further to
tr = 10° and usingN;c = 10° andM = 1000 terms, we observe that the solid curve
of panel (f)is indeed very close to a Gaussigr«(1.05), characterizing the chaotic
regime plotted in the surface of section of Fig. 7.6(c).

Next, the authors of [18] turned to another nonlinear modthef~PU Hamilto-
nian with fixed boundary conditions called the SPO2 mode (3&20)). This is a
NNM which keeps every third particle fixed, while the two irtlveen move in exact
out-of-phase motion. What is important about this NNM ig fhbecomes unstable
at much lower energies (i.€€y/N O N~?) compared to SPOE(;/N O N~1) [13],
much like the lonk= 1, 2,3, ... mode periodic orbits connected with the breakdown
of FPU recurrences [97, 66]. Thus, it is expected that ne@25Brbits will be more
weakly chaotic than SPO1 and hence QSS should persist fgetdmes. This is
exactly what happens. As Fig. 7.7 clearly shows, the dynami@ close vicinity
of SPO2 has the features of what we might call “edge of chaddjits wander in
a regime of very small (positive) LCEs, tracing a kind of “baa’-shaped region
much different than the “figure eight” we had observed ne@® ERemarkably, the
pdfs in this case (at least up to= 10'9), actually converge to a smooth function,
never deviating towards a Gaussian, as in the QSS of otheislyBtems.
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Fig. 7.7 (a) The(qy, p1) surface of section of an orbit integrated uptfe= 100 starting in the
vicinity of the unstable SPO2 mode. (b) The corresponding fuggest LCEs. (c) Linear-log
scale plot of the numerical (solid curve},Gaussian (dashed curve) and Gaussian (dotted curve)
distributions.(d) The solid curve distribution of pane) i€ better fitted by the dashed curve of the

P function of (7.14)(after [18]).

More specifically, let us séfl =5, 8 = 1, E = 0.5 and choose an orbit located
initially close to the SPO2 solution, which has just turnedtable (aEy ~ 0.4776).
As we can see in Fig. 7.7(a), the dynamics here yields baliemarbits at least
up toty = 10'°. The weakly chaotic nature of the motion is plainly depicted
Fig. 7.7(b), where the four positive LCEs are plotted. Ndi&t talthough they do
decrease towards zero for a very long time, at alhost 10°, the largest one of
them tends to converge to a very small value (abouf),andicating that the orbit
is chaotic, sticking perhaps to an “edge of chaos” regionaaddSPO2.

In Fig. 7.7(c), the corresponding pdf is plotted at titpe= 109 (whose shape
does not change aftgr= 107). An extremely long-lasting QSS is formed, whose
distribution is well-fitted by a-Gaussian witly ~ 2.769 andy? ~ 4.44x 10~°. The
“legs” of this distribution away from the center deviaterfréheg-Gaussian shape,
but remain far from the Gaussian plotted as a dotted curveifigure. Performing
a similar fitting of our data with the function (7.14), in Fig.7(d), as in the case
of Fig. 7.1(d), one finds that the numerical distributionligsaurve) of Fig. 7.7(c)
is better approximated by (7.14) wheag~ 0.006,aq ~ 170 andq ~ 2.82 with
X2~ 2.06x10°% compared with theg? ~ 4.44x 10~° obtained by fitting the same
distribution by ag-Gaussian witlg = 2.769 in Fig. 7.7(c).
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Thus, in “thin” chaotic layers of multi-dimensional Hanaiftian systems with
small positive LCEs it is possible to find hon-Gaussian QS8 flersist for very
long times as in the SPO2 case. Numerical evidence sugfests these regimes
chaotic orbits stick for long time intervals to a complexweitk of islands, where
their statistics is well approximated lyGaussian distributions connected with
nonextensive statistical mechanics.

7.5 Chaotic Quasi-stationary States in Area-preserving Mps

Two-dimensional area-preserving maps are excellent mddektudying the qual-
itative dynamics of Hamiltonian systems of two degrees eéfftom. The Poincaré
maps that we extensively analyzed in Chaps. 2 and 3 are al@sserving maps.
As such, they generically possess families of invariansedbcurves (representing
quasiperiodic orbits), which form complete barriers toraition evolving inside
“islands” centered around stable periodic orbits in ther@eshsional phase space.
At the boundaries of these islands, a complex network oflemialands and invari-
ant Cantor sets (often called cantori) exists, to which thawbits are observed to
“stick” for very long times. It is here that trajectories @it get trapped into QSS
that can be very long-lived. Such phenomena have so far beenitghly studied in
terms of a number of dynamical mechanisms responsible fmotahtransport (see
e.g. [239, 240, 350]).

It would, therefore, be very natural to wonder: Could we alsaly the dynamics
in these “sticky” regions using the probabilistic techregwf nonextensive statisti-
cal mechanics? What would pdfs of sums of iterates reveabiald help us under-
stand the complexity of motion in these domains? Will we wacdnteresting con-
nections between the “geometry” of phase space dynamicshentime-evolving
statistics of chaotic orbits, as we did in earlier sectidnmsugh a similar analysis
of multi-dimensional Hamiltonian systems? As we describehat follows, it is
indeed possible to find in such “weakly chaotic” domains @&aapreserving maps
long-lived QSS, whose pdfs do not rapidly converge to a Gansbut pass through
several stages, some of which are very well approximategtGpussian distribu-
tions.

Let us start by recalling a number of studies of such pdfs indps [330, 331,
295, 7], as well as higher-dimensional conservative maf8][lin similar “edge
of chaos” domains, where the MLE either vanishes or is vergeko zero. These
studies have already provided ample evidence of the usefslofg-Gaussian dis-
tributions, in the context of the CLT. Despite the contreyethat some of these
findings have generated [160, 71], it is worth pointing ot fior one-dimensional
maps, the situation is a lot clearer. Indeed, as shown coimgly in [331, 336],
when one approaches the critical point of the period-doghibute to chaos taking
into account a proper scaling relation that involves thg&ebaum constard and
the location of the critical point, the pdfs of sums of itesabf the logistic map
are approximated by g@Gaussian far better than the Lévy distribution proposed i



7.5 Chaotic Quasi-stationary States in Area-preservingVia 133

[160]. This suggests the need for a more thorough invegtigaf low-dimensional
maps, within a nonextensive statistical mechanics apprdaovhich g-Gaussian
distributions represembetastable statesr QSS of the dynamics [254, 288, 23, 24].

Since we are going to work in the context of the CLT, it is intpot to note that
such atheorem has been verified for deterministic system8{4 241]. Attempts to
generalize the CLT have also been published demonstré@igfor certain classes
of strongly correlated random variables, their rescaledssapproach g-Gaussian
limit distribution [338, 339, 164]. As stated earlier, hoxge objections have also
been raised by some authors [111, 170, 169], questioninthehgGaussians can
indeed constitute attractors, as in some mathematical Isodiere this was thought
to be the case, other functions were shown to describe thed@iributions in the
CLT limit.

To understand the situation better, therefore, it is ircsiva to probe deeper into
the complex dynamics of conservative maps in weakly chaaticains and investi-
gate pdfs of rescaled sum bf iterates, in the larg®l limit, and for many different
initial conditions. We will thus be able to shed more lightpossible connections
between “geometric” properties of chaotic regions and tsiaitistics expressed by
pdfs of long-lived QSS in these domains. As shown recent[296], we will dis-
cover that, in general, &4 grows, these pdfs pass frongasaussian to an exponen-
tial form (having a triangular shape in semi-log plots)imttely tending to become
true Gaussians, as “stickiness” to an ‘edge of chaos’ sebsidfavor of more uni-
formly chaotic motion. Still, we will also demonstrate tlla¢re are cases where the
orbits evolve in such convoluted pathways thaBaussian approximations persist
for as long as it was possible to iterate the equations ofanoti

7.5.1 Time-evolving statistics of pdfs in area-preservimgps

Let us, therefore, consider in what follows 2D maps of thefor

Xni1 = f(Xn,¥n) 5 Yni1=0(Xn,¥n) (7.19)

and treat their chaotic orbits as generators of randombilasaas we did for Hamil-
tonian systems earlier in this chapter. We will thus compaitg) sequences pro-
duced by many initial conditions and examine whether thesebe considered as
independent and identically distributed quantities asiiregl by the classical CLT.
In this regard, it is important to recall that the well knowhTCassumption about
the independence of identically distributed random végisban be replaced by the
weaker property of asymptotic statistical independensshawn in [241].

Thus, we may proceed to compute the generalized rescalesl guome of the
iterates, sax, of the map (7.19) in the sense of the CLT [45, 30, 241]:

Zy=M""Y i(xm —(x)) (7.20)
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where(-) implies averaging over a large number of iteratibhanda large number
of randomly chosen initial conditionsic. For fully chaotic systemy = 1/2 and
the distribution of (7.20) in the limitN] — ) is expected to be a Gaussian [241].
Alternatively, however, we may define the non-rescalecamei

2v="5 [Xn—(X)] (7.21)

(absorbing the factdvl ") and analyze its pdf normalized by its variance as follows

(see [296] and Sect. 7.2 of this chapter): First, we contsthﬁ:sumsévj,) obtained
by adding iterates, (n = 0,...,M) of the map (7.19), wheréj) represents the

dependence on the randomly chosen initial conditkéh)s with j =1,2,... Ng.

Next, we focus on the,(\j) variables, which are tha(vj,)s centered about their mean
and rescaled by their standard deviatmnand follow the procedure outlined in
Sect. 7.2, see (7.8). _

More specifically, we compute the pdfs sfﬁf and plot, in the sections that
follow, the corresponding histograms B(q(vjl)) for sufficiently small increments
(e.g.As,(\j)(: 0.05) to smoothen out fine details and analyze their functitorah.

Following [296], we express in our plots the independenialde asz/o = sﬁ,P.
Before proceeding, however, to investigate in detail thsmomena in a family
of area-preserving maps, we refer the reader to Problenefotvbwhere he (or she)
is asked to apply the above methodology to a 2D map, whichegess a strange
attractor when it is dissipative and an annular region watmplex chaotic dynamics
when it is area-preserving. It is indeed remarkable how thesSian that dominates
the statistics in the presence of a strange attractor, giéddplace to a different
function, which is well-approximated bygaGaussian in the conservative case.

7.5.2 The perturbed MacMillan map

Let us consider the so-called perturbed MacMillan mapoihiiced in [154] to study
the onset of chaos via Mel'nikov theory, in the form:
Xni1 = Yn
{yn+1 = —Xn+ 2055 + € (Yo + Bn) (7.22)

whereeg, 3, u are physically important parameters. Foe= 0, (7.22) is known

to be integrable possessing a simple polynomial invariaait allows it to have a
saddle point at the origin, fqt > 1 (see Exercise 7.1). The Jacobian determinant is
J=1-¢p, so that (7.22) is area-preserving o= 0, and dissipative fog3 > 0.
Here, we only consider the area-preserving ¢dse 0, so that the only relevant
parameters arge, ).



7.5 Chaotic Quasi-stationary States in Area-preservingVia 135

As discussed in Exercise 7.1, far> 1 the unperturbed map possesses a “figure
eight” invariant curve with a self-intersection at the amighat is a fixed point of
saddle type. Fog > 0, the invariant manifolds of this saddle split and a thinatfea
layer appears surrounding two large islands in(thgyn) plane. The MLEL; for
u=16and 02 < ¢ < 1.8 is found to vary between. @875 and (003446. By ana-
lyzing the histogram of the normalized sums of (7.20) witthiis chaotic layer for
a wide range of parametegsand u, we find that, in many cases, the pdfs begin
by being well approximated by-Gaussians and then turn to exponentials <2,
whose triangular shape on semi-log plots eventually starépproach an inverted
parabola representing the Gaussian function. Thus, nmmgtohaotic orbits in this
region for increasingly large numbers of iteratidviswe observe the occurrence of
different QSS described by these distributions. One thtsindsome very interest-
ing results, which are described in detail in [296] and aieflyrdiscussed in the
sections that follow.

Let us focus, in particular, on the time-evolving statistit two examples of the
MacMillan map, which represent respectively: (1) One setaxfes with a “figure
eight” chaotic domain whose distributions pass throughcaession of pfds before
converging to an ordinary Gaussian, and (2) a set with mongptioated domains
extending around many islands, whep&aussian pdfs dominate the statistics for
very long times and no tendency to a Gaussian is observed.

7.5.2.1 Thee = 0.9, u = 1.6 class of examples

The case = 0.9, u = 1.6 is a typical example characterized by time-evolving pdfs.
As shown in Fig. 7.8(b), the corresponding phase space ptdsya seemingly
simple chaotic region in the form of a “figure eight”, whilesthorresponding pdfs
donotconverge to a single distribution, passing fromr@aussian-looking function
to an exponential distribution.

Analyzing carefully the time evolution of chaotic orbitstinis example, we ob-
serve that there exist at least three long-lived QSS. Inquéat, fori=1,...,M =
216 a QSS is produced whose pdf is close to a purel.6-Gaussian. Figure 7.9
shows some pdfs for different numbers of iteratésNote that these pdfs corre-
spond to a “figure eight” chaotic region that evolves esaéiptaround two large
islands. However, foM > 216, a more complex structure emerges: Iterates stick
around new islands, and a transition is evident frgpi@aussian to exponentially
decaying pdfs [296].

Clearly, therefore, foe = 0.9 (and other cases with= 0.2, 1.8) more than one
QSS coexist whose pdfs are well-approximated by a sequéng&aussians. In
fact, for 10% < M < 221, the central part of the distribution is still well-fitted by
a g-Gaussian withg = 1.6. However, as we continue to iterate the mapgvte=
223 intermediate states are observed, which are better Besdny an exponential
distribution. From here on, &l > 223, the central part of the pdfs is close to a
Gaussian and a true Gaussian is expected in the Iivhit{ ). The evolution of
this sequence of successive QS3/kaimicreases is shown in detail in Fig. 7.9.
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7.5.2.2 Thes = 1.2, u = 1.6 class of examples

Let us now turn to the behavior of tlee= 1.2, u = 1.6 class, whose MLE i&; ~
0.05, hence smaller than that of the- 0.9 case (wheré; = 0.08). As clearly seen
in Fig. 7.10, a diffusive behavior sets in here that extendward in phase space,
enveloping a chain of 8 large islands to which the orbitsckstias the number of
iterations grows toN = 219,

Some representative pdfs of this evolution are seen in Fldl.1n this class
of MacMillan maps, the chaotic domain under study extendsiradl several large
islands and is apparently richer in “stickiness” phenom@ihé higher complexity
of the dynamics may very well be the reason why the correspgrahaotic states
possess pdfs that are very well approximatedptyaussians witlg = 1.6 > 1 (see
Fig. 7.11) and persist for extremely large numbers of itenst of the MacMillan
map [296].

P(z/c)
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Fig. 7.8 (a) Pdfs of the renormalized sumshfiterates of the MacMillan map (7.22), fer= 0.9,
u=1.6,M < 2% andN initial conditions randomly chosen within a squf210-°) x (0,10°6)
about the origin. (b) Phase space plotKbe= 216 (after [296]).

Exercises

Exercise 7.1.Consider the perturbed MacMillan map (7.22) of Sect. 7.5.1.
(a) Prove that it is integrable far = 0, by demonstrating that it possesses the
polynomial invariant (xn, yn) = X2y2 + X2 + Y2 — 2uxnyn. Investigate the form of the
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Fig. 7.9 Detailed evolution of the pdfs of the MacMillan map o= 0.9, u = 1.6, asM increases
from 212 to 226, respectively (after [296]).

invariant curves foliating the plane for different valuesioand show that when
|t > 1 the origin is a saddle point. In what way is the dynamicgfor 1 different
fromu < —-17?

(b) Locate the stable and unstable manifolds of the linedrequations about the
origin, for y = 1.6 ande = 0.001. Now follow them numerically in the full 2-
dimensional plane starting with many initial conditionag#d densely on these
manifolds, very close to (0,0). Begin wiiB = 0 and plot the intersections of the
manifolds, delineating the “figure eight” region that yowsebve numerically at the
central part of the plane. Increasing by small steps theevail3, can you locate nu-
merically the critical valugs; beyond which the manifolds cease to intersect? Hint:
This phenomenon diomoclinic tangencin 2-dimensional mappings is discussed
in [154].

Problems

Problem 7.1.Consider the example of the Ikeda map [144]

{ Xni1 = R+ u(_xncosr —YnsSINT) (7.23)
Ynt1 = U(XnSINT + Y, COST)
wheret =C; —Cp/(1+x2+y3), R u,Cy, C; are free parameters. Its Jacobian deter-
minant isJ(R,u, T) = u?, hence (7.23) is dissipative ftu| < 1 and area-preserving
for Ju| =1.

(a) Fix the values of; = 0.4,C, = 6 andR =1 and show by plotting the iterates of
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Fig. 7.10 Structure of phase space plots of the MacMillan map (7.22)doameter values= 1.2
and u = 1.6, starting from a random set of initial conditions chosemdamly within a square
(0,10°8) x (0,10°®) about the origin and iterating the miptimes (after [296]).

(7.23) in the(xn, yn) plane that, fou = 0.9, all orbits converge on a strange attrac-
tor. Now setu = 1 and demonstrate numerically the existence of a chaotialann
region surrounding a central domain about the origin, msidich the motion is
predominantly quasiperiodic.

(b) Write a code implementing the procedure outlined in Sé&.1 and evaluate
pdfs of the normalized variables%> for the parameter values= 0.9, 1, for a high
number of iteration® and a large number of initial conditioM. Thus, show that
the pdf of the strange attractor of the Ikeda map can be wigtflly a Gaussian.
(c) Consider now the area-preserving case 1, and select initial conditions in
the outer chaotic annulus surrounding the origin. Show ithahis case the pdfs
do not converge to a Gaussian, but to a very different function,seheentral part
is well-fitted by ag-Gaussian withg = 5.3, even for very largél. Can you detect
any dynamical features on the boundary of this annular rethiat might justify its
characterization as an “edge of chaos” regime?

Problem 7.2.1t is possible to extend the study of Sect. 7.5 to higher dsiwaral
conservative maps and obtain results on their chaotic Q8 @amplex statistics.
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Fig. 7.11 Pdfs of the normalized sums M iterates of the MacMillan map (7.22) for parameter
valuese = 1.2 andu = 1.6, M = 218, 21 and 2°. Note the apparent convegence tq(e: 1.6)-
Gaussian, due to the complicated dynamics around the Islayads of Fig. 7.10 (after [296]).

One such example is a 4D symplectic mapping model of acdetestgnamics [55,
61]. After some appropriate scaling, the equations of thigroan be written as
follows
{Xn+1 = ZCxXn—Xn—l_pX%‘f'Y% (7.24)
Ynt1 = 2CyYn — Yn—1+ 2XnYn '

wherep = xS/ BySy, Cxy = COS(2Ty y) andsyy = sin(27mxy), axy are the so-called
betatron frequencies arflly are the betatron functions of the accelerator. Following
[55], setgx = 0.21,qy = 0.24 and assume thfy are proportional taqg)}.

(a) Investigate weak diffusive phenomena in thdirection of the 4-dimensional
phase space, as follows: Start by verifying first that yor= yo = 0 the point
(X0,X1) = (—0.0049 —0.5329 is located within a thin chaotic layer surrounding 5
large islands in théx,, x,—1) plane. Then, keeping the sarf¥@,x; ), choosgys, o)
very close to zero and observe the evolution of yhg indicating the growth of
the beam in the vertical direction as the number of iteratMnincreases. Plot the
projections of the iterates separately on tReX,1) and(yn,Yn:+1) planes.

(b) Write a code to evaluate the pdfs associated with thesiespfollowing the
procedure outlined in Sect. 7.5.1. Starting always withsdue(xg, X1 ), use differ-
ent initial values foryy (y1 = 0) to compute pdfs of the normalized sums of iterates
of theyp-variable. Show that, just as in the case of 2-dimensionalsnthaese distri-
butions are initially of thej-Gaussian type, evolving into exponential distributions
and finally turning into Gaussians. Note, for example, tha¢ such QSS with a
maximum amplitude of about00001 is apparent up td = 21°, when its ampli-
tude is suddenlyripled in they-direction.



140 7 The Statistical Mechanics of Quasi-Stationary States

(c) Demonstrate that the closer one startggte- y; = 0 the more the resulting
pdf resembles g-Gaussian, while the larger tlyg y; values the faster the pdfs tend
towards a Gaussian-like shape.



Chapter 8
Conclusions, open problems and future outlook

Abstract The final chapter first summarizes and discusses the mairusios
described in the book. We then list a number of open probletnish we feel should
be further pursued in continuation of what we have presentedrlier chapters. We
start with some recent results that extend the mathematiealy of integrability
from the viewpoint of singularity analysis and continuelw#ome directions that
further develop the topics of nonlinear normal modes, Iaatibn, diffusion and
the complex statistical properties of nonlinear lattidesally, regarding the future
outlook of research in Hamiltonian dynamics, we briefly esvihree topics of great
current interest that were not treated in the book, but ateeely important in
view of their far-reaching experimental applicationsafijomalous heat conduction
and the discovery of mechanisms that control heat flow basgtiedynamics of
Hamiltonian lattices, (ii) soliton dynamics in nonlinedrgionic structures and (iii)
kinetic theory of Hamiltonian systems with applicationptasma physics.

8.1 Conclusions

One important feature that characterizes the Hamiltonyatesms treated in these
lectures is their relevance to specific physical applicetid he state of complete or-
der, expressed mathematically by the property of intetitafsee Chap. 2) has puz-
zled researchers since the times of Poincaré and Kowalgasit the turn of the 20th
century. Despite the great activity inspired by the work ainfevé, from the early
1900s until today [101], very few examples have been fouiadl dne completely
ordered, possessing a full set of integrals. On the othed,itae celebrated KAM
theorem of the 1960s and Nekhoroshev’s work on the stalifityear-integrable
Hamiltonian systems [259] demonstrated that close to cetaplrder there is a vast
number of physically important examples (the solar systemdithe most famous),
whose behavior iglobally ordered for “most” initial conditions in phase space and
exponentially long intervals in time.

141
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What happens then as one departs from integrability by mgrihie system'’s
parameters, or waits patiently to find out whether certaiaklechaotic orbits will
reach an equilibrium state, where all fundamental moderesii@ same energy?
The fundamental modes we speak of here are none other thaiiNikis of Chap. 3
and Chap. 4, formed by the continuation of the linear normadles of harmonic
oscillator systems with nearest-neighbor interactiordMs play a very important
role in the study of local and global stability of Hamiltonidynamics. They have
been especially helpful in the investigation of the apphdacthermal” equilibrium
in Hamiltonian lattices ever since the discovery of FPU resnces by Fermi, Pasta
and Ulam in the mid 1950s [75], which remains to this day adapigreat research
interest, as discussed in Chap. 5.

We have discussed extensively local dynamic indicatorelyidsed in distin-
guishing ordered from chaotic dynamics. More specificallg, have emphasized
the topic of variational equations and tangent dynamicsreference orbit and fo-
cuses on a set of particularly efficient indices called SAtd &ALI, which utilize
more than one variational vector to identify the nature ef ¢ibit Our main con-
clusion here is that the GALI method is indeed superior totrotiger similar tools
used in the literature for several reasons: First, it detelthotic behavior faster than
other methods, due to the exponential decay of the G&\bbserved more rapidly
in the plots of the highekindices. It is also perhaps the only method that can deter-
mine the dimensionality of a torus of quasiperiodic motiol accurately predict
its destabilization threshold.

One of the most importantissues to which the GALI methodiapji the break-
down of FPU recurrences that constitutes the main themesagtults described in
Chap. 5. In that chapter, we approach the problem of FPU recces for the view-
point of localization in Fourier (or modaj) space. Using techniques of Poincaré-
Linstedt perturbation theory combined with ample numégsaence, we demon-
strate that FPU recurrences can be understood in teropsooi which reconcile the
approach ofj-breathers [131, 132] with of the “natural packet” sceng@rioposed
in [38, 39]. Since these recurrences are related to the mresa stabley tori, the
GALI method can be invoked to determine conditions underctvhjitori become
unstable. This leads to a weakly diffusive motion of nearthyjite and eventually to
the collapse of recurrences and the onset of energy eqtipaih the FPU lattice.

These topics are closely related to the phenomena of laet@izand diffusion
discussed in Chap. 6, this time in configuration (rather tRaarier) space. In-
deed, the surprising occurrence of localized oscillationsonlinear Hamiltonian
lattices, pointed out as early as 1988 [309] and studiedugedy in the literature
ever since, has severe consequences for energy transplodifiusive processes
arising in a multitude of applications, like Josephson jigrcnetworks, nonlinear
optical waveguide arrays, BoseEinstein condensates aifdremmagnetic layered
structures [129]. Furthermore, the breakdown of localiraedue to disorder and the
associated diffusive spread of wavepackets is at presentjacs of intense investi-
gation [134, 320], in view of their many applications to ligimopagation in spatially
random nonlinear optical media and related Bose-Einstaidensate phenomena.
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Finally, we come to the remarkably complex statisticalriistions of weakly
chaotic motion in Hamiltonian systems discussed at lengt@hap. 7. As with
complete order, it turns out that complete disorder is als@xaeption in Hamil-
tonian dynamics. Widespread global chaos, giving rise tasSian pdfs accord-
ing to BG statistics, is known to prevail in the so-called Ao or Sinai systems
[11, 12, 310, 311] characterized by completely chaotic amtsuch as elastic par-
ticles in a box or a periodic array of scatterers, motion arfieses of everywhere
negative curvature, etc. To be sure, Gaussian pdfs and B&tistwere also discov-
ered by many researchers in large scale chaotic regiongéebin mixed systems,
where domains of order and chaos coexist.

Complexity is manifested in domains of weak chaos, near tumdbaries of or-
dered motion or in cases where stable periodic motion firstatéizes as the total
energy is increased. Itis there that we find “thin layers tedatic orbits, whose pdfs
in the sense of the Central Limit Theorem ot converge to Gaussians, even after
very long times. It is in these cases where complex statistitses associated with
what we have called metastable or quasistationary stat€hap. 7. Remarkably
enough, our investigations of these QSS share many comnadurés with anal-
ogous studies of dynamical systems characterized by lomgeranteractions and
strongly correlated motion [335].

The pdfs of sums of variables associated with this type of @®Sound to be
very well described by a class of functions caltp@Gaussians related to the notions
of Tsallis’ entropy and nonextensive statistical mechsnitchere the indeg satis-
fies 1< g < 3 andg= 1 corresponds to the Gaussian distribution. A detailed mume
cal analysis of these pdfs demonstrates that their ocoteiisriar from rare. Indeed,
in many of the physically important Hamiltonian systemslexgd in this way, we
have discovered that these QSS are closely connected wyawripartition in one-
dimensional lattices, dynamical transitions in a micrgpta Hamiltonian and other
related phenomena [18]. Particularly with regard to theratterization of energy
transport and diffusion in Hamiltonian lattices, it would bf crucial importance to
use the index] as a measure of how far our pdfs lie from the Gaussian eqjuilibr
state of BG statistical mechanics.

8.2 Open Problems

I would like to close this set of lectures by mentioning a nembf open prob-
lems, which we feel should be pursued, firstly because tHissdvance our knowl-
edge and expertise in the field of Hamiltonian systems. Mogortantly, however,
progress in these issues will most likely provide answepsésent day questions of
great physical concern. Naturally, our point of departuilebe the topics we have
presented in these lectures and hence the list of probletiisexlibelow is far from
being comprehensive. Nevertheless, even in this limitedesa, we believe that the
reader will find our problems interesting enough to try theasdd on the methods
and information contained in the present volume.
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8.2.1 Singularity analysis: Where Mathematics meets Plogsi

As we have seen in Chap. 2, the topic of integrability has lméeyreat interest in
the study of Hamiltonian systems for centuries. One of thewas, of course, is that
in this way one could study models, where the dynamics isep#yf ordered and
understood. As the integrable examples, however, turnetbdee a precious few,
many physicists were discouraged and integrability grhylleecame a favourite
playground for mathematicians. This situation was drallfichanged in the late
1960s, when soliton equations were discovered, which wetenly physically
interesting [355] but could also be solved analytically bg method of Inverse
Scattering Transforms (see e.g. [2, 3]). In this way, thendbace of applications
of soliton equations in water waves, nonlinear optics, gbsen junctions and even
field theory has kept the subject of integrable PDEs alivétferpast forty years.

Such was not the case, however, with integrable systems @&sQdgscribing
Hamiltonian dynamics. After the celebrated discovery ef thda lattice [332] and
the Ablowitz-Ladik model [4], the search for integrable Hi4amian systems did
not produce many physically interesting examples [62].{ditesa thorough explo-
ration using the tools of Painlevé analysis [101, 282] thesbst of new integrable
Hamiltonians has not been particularly satisfying.

Nevertheless, an interesting conclusion did arise cotmgrhe case ohear-
integrable Hamiltonians, where the Painlevé requirement allowinfy groles as
movable singularities was lifted amaulti-valuedsolutions emerged in the complex
domain. Ziglin's theory of non-integrability [155] showdidat small perturbations
of a Painlevé integrable system produdefinitely branchedsolutions, typically
containing logarithmic singularities. More importantigwever, the coefficients of
the logarithmic terms in the singular expansions were shtmue related to the
Mel'nikov integral [163], which is known to provide an estite of the width of the
chaotic layer in nearly-integrable systems [155, 290, 291]

The next question, of course, is what happens when the gotutf a Hamil-
tonian system are locallfinitely branched As was demonstrated in a number of
papers [53, 116, 135], local finite branchingnist sufficient to ensure integrability.
It is important that the global Riemann surfacefinétely sheetedwhat often hap-
pens in non-integrable systems is that, as one repeatddiyrates along a closed
loop in the complex time plane, new singularities appeaickvpreclude the return
to the initial values and produce an infinitely sheeted smusurface, even though
each singularity iy itself finitely branched. Every time a system of ODEs with
finitely branched singularities turned out to also possdistaly sheeted Riemann
surface, a known integrable system was recovered whiche#mabsformed to one
that has the full Painlevé property after appropriatealsld transformations [155].

Thus, an open problem is to discover new integrable ODEssw/kolutions are
locally finitely branched with a finitely sheeted Riemanrface, but which has not
yet been identified by the Painlevé analysis. An attemtandirection was made in
[135] in the framework of perturbation theory. Unforturigtén all the cases tried,
the finitely sheeted property established at first order vedgpreserved at higher
orders.
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A related problem is to connect the structure of the finitdlgeted Riemann
surface of the solutions of a problem with finetely brancheddarities to the
dynamical propertiesf the orbits. An interesting start in this direction was rad
[72, 73], where an integrable model of this type was analgsetcertain remarkable
properties of its solutions (such as the isochrony of itsogke orbits) were found to
be related quantitatively to the structure of its Riemamfege. A next step might
be to vary slightly the parameters of the model and invesgitiee onset of chaotic
motions in connection with changes in the geometry of therRien surface.

8.2.2 Nonlinear normal modes, quasiperiodicity and locedtion

Let us recall that in Chap. 3 the problem of stability of matwas approached
starting from certain very simple periodic solutionshdtlof Hamiltonians like the

FPU-B 1-dimensional lattice, under periodic and fixed boundarydétions. One

reason for proceeding in this way is the fact that these garisolutions are ex-
pressed in terms of known functions and the study of theieér) stability leads to
the analysis of a single second order ODE of the Lamé type.

Concerning in particular the solutions called SPO1 (3.1#) P02 (3.20) of
the FPUB model under fixed boundary conditions, we observed in Sectht
SPOL1 destabilizes at much higher energies than SPO2. Intli@ctiestabilization
threshold of SPO2 as a function of the number of partiblesas seen to follow
the law (3.23)Ec o« N~2, derived in [131] for the lowg = 1,2,3,.. modes, where
g numbers the NNM continuations of the linear modes of theesygstAnd yet our
SPO2 solution corresponds to a much higher modequtt2(N+ 1) /3! Why is that
s0? How can the instability threshold of such a high moder-@véts asymptotic
form—coincide with the one satisfied by the lopmodes? We do not know.

The SPO1 solution on the other hand, is identified withqghe(N + 1) /2 mode
and satisfies a very different asymptotic destabilizataom of the formE; oc N1,
The open question, therefore, is: What is the theory thaggmithe stability of the
higherqg NNMs asN — «? We do not speak here of course of kiighest gnodes at
the right end of the spectrum & ...N — 2, N — 1, N), for which the analysis is very
similar to that of the lowest ones, at least for the FB0Ohain under fixed boundary
conditions.

It is well-known, after all, that most studies carried outltie on the stability of
NNMs in these FPU lattices concern the loymodes, since they are the ones that
play the main role in the phenomenon of FPU recurrences (sap.&). What then
is the significance of the higher modes? Are they responBibleome other phys-
ically important phenomenon? Does their instability thidd obey an asymptotic
law different than those we have mentioned so far and whageisieeper meaning
of these laws? Again we don’t know.

One way to approach this problem, at least for the case obgierboundary
conditions is provided by the theory and results of Chapeé g&g. Sec. 4.4.2). In
that theory, symmetry properties of the equations of moéieexploited to form
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busheof orbits consisting of linear combinations of fundamehtblMs. Studying
then the interactions among the modes belonging to each kushpossible to
study analytically the linear stability of the bush itselfiich generally represents
a quasiperiodic solution of the system whose frequenciegterse of the modes
participating in the bush. Thus, it becomes possible toamemtability properties of
these Hamiltonians more globally, as has been done e.g0ji8H) (see a review of
this approach in [66]).

An open problem, therefore, is to combine the results of tghltheory with
the study of stability of low-dimensional tori (callegtori) discussed in Chap. 5 to
investigate more deeply the phenomenon of FPU recurrembéseffort may meet
with limited success for lattices with fixed boundaries, doghe small number
of symmetries present in that case. Our suggestion, thesgfoto study the FPU
recurrence problem fqreriodicboundary conditions from the point of view of bush
theory and compare the results with tip¢ori approach of Chap. 5. Note that care
must be taken to deal with the two-fold degeneracy of thalispectrum in periodic
models, which modifies somewhat the analysis of the recaerproblem [275].

Let us now come to the question of stability of tori of quasipaic motion and its
connection with the phenomenon of localization in nonlirlatices. As the reader
recalls, in Chap. 5 we interpreted the phenomenon of FPUneces as a result
of localization in the Fouriemodalspace and studied in Sec. 5.3.1 the stability of
the associated-tori using the GALI method of Chap. 3. What about localiaati
in configurationspace as exemplified e.g. by the occurrence of discretehemsat
like those investigated in Chap. 67 Do we also find low-dintere tori in their
neighborhood?

In [65] this question was answered affirmatively in the cafa attice model
described by the Hamiltonian

N
HO= 3 (3l ccosaid— phe Glna ). @)

in which harmonic nearest-neighbor interactions are abeeth a periodic forcing
term has been added with amplitudeand frequencywy. This Hamiltonian was
studied in detail in [244], where among other phenomenatahaoeathers were
also observed that remain localized on a small number of 8itevery long times.
As was explicitly shown in [65] via the GALI criterion, in theeighborhood of
certain fundamental discrete breathers of (8.1), low-disienal tori are seen to
exist, which become unstable as the parameters of the pnadoie varied.

The following question arises therefore: Do these loctibraphenomena de-
pend on the fact that (8.1) feeefrom linear modes that can destroy localized oscil-
lations through resonances with the phonon spectrum? Itdimeivery interesting
to investigate this question by adding to the above Hanidtoa harmonic part of
the formy N, {5 (Xn1 — Xn)?}, and slowly varyL > 0 to determine how these terms
affect the behavior of the dynamics.

Another class of models that one can study in connection Mammiltonian dy-
namics aresymplectic mapswvhich are numerically far easier to explore and arise
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in many physical applications [43, 51, 59, 183, 247, 272Jug it might be quite
illuminating to represent each oscillator by a 2-dimenal@ymplectic map (e.g.
of the standard map type [139, 217, 249]) and consider a onergsional “lattice”

formed byN such maps coupled by nearest neighbor interactions asvillo

Xg\+1 = er1 +yrj1+1’ (8.2)
B

S-St —xh)] + sin2m(d ™ — )]}

i Ky i
Yoo =Yh+ Z‘Tsm(an,%) —
wherej = 1,...,N, B is the coupling parameter between the maps and fixed bound-
ary conditionsg = xn+1 = 0 are assumed.

This model was investigated in [65], where it was demonstraumerically that
it does possess discrete breather solutions, around wiicliimensional tori can
be identified, as long as the discrete breather is stabléhérunore, changing to lin-
ear normal mode coordinates, in which the linear parts ofithps are uncoupled,
it is easy to show that when the energy is placed initiallg#1,2,3, ..., of these
modes, and the paramefeis small enough, FPU-like recurrences arise, accompa-
nied by the presence sfdimensional tori, just as we found in the FPU Hamiltonian
models. Furthermore, the stability of these tori and thekdewn of recurrences as
B increases can also be accurately monitored using the GAtHadg65].

It would, therefore, be very interesting to extend thesdistiand investigate in
greater detail dynamical phenomena in coupled standard,mather than pursuing
them on Hamiltonian lattices, which is computationally fiaore time-consuming.
For example, it would be very interesting to impose perideiandary conditions
to the coupled map system (8.2) and try to understand itsdsustorbits, FPU type
recurrences and their effect on the onset of energy eqitipaiin such models.

Finally, it is important to mention certain open questioalted with the sta-
bility of discrete breathers in Hamiltonian lattices. Fostance, why is it thadim-
ple breathers (exhibiting only one exponentially localizedtcal maximum) are so
frequently found to be stable under small perturbationsPeMpecifically, let us
consider multibreathers, which represent localized ladimhs with more than one
major maximum (or minimum) and compute all of them for a 1-elirsional lattice
of N particles with harmonic nearest neighbor interactions gumattic on-site po-
tential, using homoclinic orbit methods [40, 42, 43]. Whytithat most of them are
found to beunstableunder small changes of their initial conditions [41]?

8.2.3 Diffusion, quasi-stationary states and complex stts

And now we come to one of the most engaging aspects of comg@exltbnian dy-

namics, which concerns the phenomenon of diffusion, by kvhie mean slow and
gradual transport of energy in weakly chaotic domains. THaissport concerns ei-
ther modes in Fourier space, as we found out while studyiadptbakdown of FPU
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recurrences in Chap. 5, or particle motion in configuratipacg, resulting from
the breakdown of localized disturbances in disorderettéstt as we discovered in
Sec. 6.4.2.

This brings us to an important question regarding diffusiori-dimensional
Hamiltonian lattices in the presence of disorder: What leagpf nonlinearity is
introduced to the system? How can we understand its effe¢cherocalization
properties of wave packets in disordered systems? Thideclyithg problem has
been investigated in recent years by many researchers 2235,205, 134, 320,
341, 257, 147, 315, 127, 213, 342, 256, 258, 48, 49]. Most edd¢hpapers con-
sider the evolution of an initially localized wave packetlamow that wave packets
spread subdiffusively for sufficiently strong nonlineist

On the other hand, if the nonlinearities are weak enoughevpackets appear
to be frozen, in the sense of Anderson localization, at l&asfinite integration
times. In fact, an alternative interpretation regardingevaacket evolution has been
conjectured in [181] claiming that these states may be io®dlon some KAM
torus forinfinite times! Which of these interpretations is correct? Do wavekpts
continue to spread subdiffusively in some weakly chaotimdim for all time, or do
they eventually settle down on a finite (or infinite) dimemsibtorus?

We suggest here that this question may also be studiedstatiaticalapproach,
similar to the one we have described in Chap. 7. As we havamga in that chap-
ter, chaotic orbits in weakly chaotic domains of multi-dim@nal Hamiltonian sys-
tems are often seen to form QSS that are extremely long liveid.is exemplified
by pdfs of sums of their variables, which, in the sense of th€ @o not converge
to Gaussians, but are well-described by a class of so-call@dussian functions,
whose index lies in the intervald q < 3 and tends tg = 1 when the QSS reaches
the Gaussian state of strong chaos.

An interesting open problem, therefore, may be formulatefbbows: Consider
the QSS formed by the spreading of a wave packet resultimg fine delocalization
of a central excitation in a disordered KG or DNLS 1-dimensidattice. Evaluate
the sum of the position coordinates of their particles andysthe time evolution
of its normalized pdf as it evolves in a presumably weaklyotitaregion of phase
space. In the event that this pdf is well approximated ky@aussian, estimate
the indexq and plot its behavior as a function of time. If its values showen-
dency to approacth= 1 as time progresses then the process can be characterized as
chaotic diffusion, while if they values remain far from unity for all time, this would
constitute evidence that the dynamics eventually “sti¢ksthe boundary of some
high-dimensional torus of the system.

Where else in the multi-dimensional phase space can one fadkly chaotic
regimes, where similar QSS phenomena are observed? Aeeithpsrtant enough
physically to justify the use of nonextensive statisticalaimanics to characterize the
dynamics in the corresponding regimes? One such posgibllitady mentioned
above concerns the spreading of wave packets in disorderdihear lattices. An-
other one refers to the role gfGaussian approximations of pdfs for chaotic or-
bits associated with the breakdown of recurrences in the-&Rbdel, which was
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recently studied in [19]. Are there any other examples of Htaman dynamics,
where this type of complex statistics might be relevant?

8.3 Future Outlook

8.3.1 Anomalous heat conduction and control of heat flow

The problem of heat conduction in dielectric crystals hanten important issue in
mathematical physics for many years. The first celebratpcoaeh to this problem
is due to none other than Rudolf Peierls (1907-1905), whpgsed in the 1930s an
explanation based on the fundamental assumption that thignearity of phonon
interactions can lead to a state of thermal equilibrium, lictv normal diffusion
can occur with constant heat conductivity [267].

Ever since the famous FPU experiments of the 1950s, howtbeee has been an
impressive amount of analytical and numerical work by marthars, who showed
on a wide variety of lattice models that nonlinearitp sufficient to ensure energy
equipartition between the phonon modes and normal therorauction. Indeed,
even in cases where normal heat conductivity was obserkiechdat conduction
coefficient often depends strongly on the model and diffignsificantly from what
is measured in actual physical experiments [222].

As noted by Casati and Liin [79], 1-dimensional FPU lattiegkibit anomalous
heat conduction, whose thermal conductivity coefficiers found to diverge with
the system sizé ask ~ L3, while when transverse motions are included in the
model one findg ~ L1/3[348]. In fact, a simple formula has been proposed relating
heat conductivity with anomalous diffusion in a one dimensi system [227], as
follows: Let us recall that Fourier’s law of heat conduct&iates that the heat flux
j is proportional to the temperature gradiéfit as

j=—«0T, (8.3)

this implies thaf isindependendf the size of the system. Denoting energy diffusion
by < 02 >=2Dt%, (0< a <2),ithasbeen demonstrated in [227] thdl L?, with
B=2-2/a!

This latter relation, corresponding to subdiffusion ok 1 and superdiffusion
for a > 1, was found to be in good agreement with many results avaifabm
1-dimensional lattices, as well as existing data from mamysgcal systems [79].
On the other hand, the situation regarding the divergentieeofonductivity coeffi-
cient with system size in 2 and 3 spatial dimensional FPU risadestill a topic of
ongoing investigation [223, 305].

In another series of studies, researchers considered #sbpity of actually
being able tacontrol the heat flow, in a variety of 1-dimensional nonlinear lasic
Based on a model proposed in [329], in which heat was nunilgrgfzown to flow
in one preferential direction, Li, Wang and Casati [228] sidered an improved
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version described by the Hamiltonian
N 2
_ PP Y 2V _

and divided the corresponding lattice in three parts: Ondfigart (L) the particles
are assigned a spring constkit ki and on site parameter=\V,, while on the right
part (R)k = kg = Ak andV = Vg = AV_. The two ends of the lattice are connected
to heat reservoirs at temperatufies- T = To(1+A), T =Tr=To(1—A4) and in
the middle part of the lattice the spring constant was skttdki,. Fixing now the
valuesofa=m=1, V. =5, k=1, one may adjust the paramet&sA ki, To
and plot the heat current as a function/ofor different values offp.

As is well-known, (8.4) is the Hamiltonian of the Frenkeli#torova model,
which has been shown to exhibit normal heat conduction [kvje homogeneous
casek, = kint = kr = k, VL = Vr = V. However, setting, = 0.05,A = 0.2 and
N = 100 a remarkable phenomenon was observedAFor0 the heat curreng,
was found to increase with, while in the regiomd < 0 the heat current is almost
zero, implying that the system behaves as a thermal insulattact, by increasing
the value ofTy = 0.05,0.07,0.09 the rectifying efficiency, defined &g, /j_| can
increase by as much as a few hundred times [228]!

Thus the study of these models has opened up the way for atuneltof ap-
plications of great importance such the designing of noveirhal materials and
devices like thermal rectifiers [329, 228] and thermal tistoss [233]. Indeed, the
possibility of building such devices has been demonstrat@dany laboratory ex-
periments [81, 273, 351, 195], whose discoveries may eadiptiead to practically
useful products.

8.3.2 Complex soliton dynamics in nonlinear photonic strtuces

The behavior of light in media with nonlinear optical respetis one more topic of
intense research interest, where Hamiltonian dynamiocs@ed. The main reason
for this is the fact that nonlinear effects in light propagatsuch as self-localization
and nonlinear interactions have far-reaching technoddgpplications in optical

telecommunications, medicine and biotechnology. Theritiga of the laser along
with recent developments in material science and the adferdvel nonlinear op-

tical materials have led to an explosion of experimental twedretical studies in

nonlinear optics. More specifically, nonlinear effectsjtical devices and the com-
plexity of the associated wave dynamics have been recogdjaizeffective potential

mechanisms for light control.

One of the most fundamental phenomena in nonlinear optiaaéwpropagation
is the self-trapping of spatially localized beams, reaglfrom the balance between
diffraction and nonlinearity. The concept of the soliton, as a solitaayevwvhich
remains intact under mutual interactions (see Sec. 5Aak)played a crucial role
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in the development of nonlinear optics [333, 194]. Solitaresobtained as solutions
of PDEs corresponding to infinite-dimensional integrabéertiitonian systems and
are remarkably robust under small perturbations [2, 3]hkn ¢ontext of nonlin-
ear optics, wave propagation is accurately modeled by thdihear Schiodinger
Equation (NLS) under the so-called paraxial approximairs].

Integrability, however, as we have so often said, is the gti@e. Once spatial
inhomogeneitieare allowed in the system the equations describing waveagi@p
tion become non-integrable due to symmetry breaking. Thitudes the existence
of pure solitons in the strict mathematical sense, but gigesto the occurrence of a
plethora of solitary waves, which do not have a counterparté homogeneous case
[94, 219, 185, 186]. More importantly, it results in compkaxd interesting wave
dynamics, allowing for the control and routing of light besarRor example, an un-
stable stationary solution could evolve into a stable orteunertain circumstances,
providing a transition phenomenon with many potential &ggpions. Furthermore,
many studies have shown that different types of inhomodgreah be very useful
for designing photonic structures having desirable fest@and properties.

Now, wave propagation of the electric field variable- u(z,x) in an inhomoge-
neous medium with Kerr-type nonlinearity is described by/glerturbed NLS

du  d%u
5>+ 55

5, T 55z H2AUPu+E[Ano(x 2) + Anp(x 2)|uf*] u=0 (8.5)

wherez andx are the normalized propagation distance and transverseinate
respectively and the potential functioAs(x,z), i = 0,2 model the spatial vari-
ation of the linear and nonlinear refractive indices. Thaehsionless parameter
€ indicates the strength of the potential and is “small” fdatigely weakly inho-
mogeneous media, which is the case of interest in techradbgpplications. The
functionsAn;(x,z), i = 0,2 can be either periodic or nonperiodiciandz

As is well-known, the unperturbed NLS ((8.5) with= 0), has a fundamental
soliton solution of the form

u(x,2) = AsechA(x — xo)]€ (229 (8.6)

wherexg = Xo(2) = vz, 0 = 0(2) = —2*/8+2A2/2, Ais the amplitude or the inverse
width of the soliton solutionyg is its center (called “center of mass” due to an
analogy between solitons and particleghe constant velocity, and the nonlinear
phase shift.

The longitudinal evolution of the cente&g under the lattice perturbation is ob-
tained by applying the effective-particle method [193].cAading to this method
one assumes that the functional form as well as other piiep@tftthe soliton (width,
power) are conserved in the case of the weakly perturbed Nhi. assumption
has to be verified, however, through numerical integratioBg (8.5) at least to a
good approximation. The motion of the centgris equivalent to the motion of a
particle with massn = [ |u|?dx= 2A under the influence of an effective potential
Vet(X0,2) = 2¢ [ [Ang(X, 2) + Anp(X, 2)|u(X; Xo) %] [u(X; o) [*dx and is described by
the nonautonomous Hamiltonian
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H= m_2v2 +Vet(X0,2) (8.7)
wherez is considered as "time” and = X (the dot denotes differentiation with
respect t@) is the velocity of the soliton’s “center of mass”.

In the case of zero longitudinal modulatiof\f¢:/dz = 0) the system is in-
tegrable and soliton dynamics is completely determinedHhgy form of thez
independent effective potential. Stable and unstabléosislican be formed at the
minima and maxima of the effective potential, while solgortan also be either
trapped between two maxima of the effective potential oeotdid by potential bar-
riers.

The presence of an expli@tiependence in the effective potenti@V ;s /0z+# 0)
results in the nonintegrability of the Hamiltonian systeimeh describes the soliton
motion and allows for a plethora of qualitatively differesaliton evolution scenar-
ios. The corresponding richness and complexity of solitpmasnics opens a large
range of possibilities for interesting applications whitveunderlying inhomogene-
ity results in advanced functionality of the medium. Noegnrability results in the
destruction of the heteroclinic orbit (separating trapfredn travelling solitons),
allowing for dynamical trapping and detrapping of solitons

Thus, the study of soliton dynamics in complex photoniccddtrtes is a chal-
lenging research direction, as it promises to provide lighitrol functionality in
appropriately designed media with numerous technologigplications. Itis a typ-
ical case of a field where complexity opens new possibiliti¢h significant tech-
nological advantage, and where the concepts and methodswittdnian dynamics
provide excellent tools for understanding and designiragical systems with de-
sirable properties.

8.3.3 Kinetic theory of Hamiltonian systems and applicat®to
plasma physics

The phase space evolution of particle distribution funtiof non-integrable Hamil-
tonian systems is usually described bguasilinear theoryeading to an action dif-
fusion equation, in which the perturbation terms are takéo account through a
diffusion operatoD that generally depends on both space and time [340, 114. Thi
diffusion equation may be derived starting with the Fokkianek equation

OF 0 192

5t =33 VF)+ 552 (OF); (8.8)

wherel is the action variable ir,y, z space. Noting now that [229, 200]

10D
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the desired diffusion equation is directly obtained as

oF 0 oF
Fraiey <D53)' (8.10)

In the standard derivations of the above equations it isnasdiuthat motion is
randomized, with respect to the phase of the perturbatiter, @ane period. This is
related to the Markovian assumption, used for example idystig Brownian mo-
tion, according to which the dynamics is characterized byetely uncorrelated
particle orbits, phase-mixing, loss of memory and ergagigihese statistical prop-
erties naturally lead to the important simplification tha¢ fong time behavior of
particle dynamics remains the same after one interactine twith the wave. The
significant drawback is that the diffusion coefficient isgitar, with a Dirac delta
function singularity so that further considerations areassary in order to utilize
such operator in theoretical and numerical studies [347].11

The Markovian assumption, however, runs contrary to thedyioal behavior of
particles interacting with coherent perturbations, sipkase space is often a mix-
ture of chaos and order with islands of coherent motion emi&edvithin chaotic
regimes [229]. Furthermore, near the boundaries of suehdsl particles are ob-
served to “stick” and undergo coherent motion for times miectger than the in-
teraction time. Even when the amplitude of the perturbatisrassumed to be im-
practically large so that the entire phase is chaotic, tresitjnear theory fails to
give an appropriate description of the evolution of theriistion function [283].
The persistence of long time correlations invalidates therkdvian assumption
[304, 74, 37, 356].

Therefore, we need to develop a kinetic theory, based orpfirstiples, in order
to study a large variety of realistic systems for which theké&ian assumptions are
simply not valid. Recently, such a theory was proposed udengiltonian perturba-
tion theory and Lie transform techniques to derive a hidnaaf kinetic evolution
equations that does not rely on any simplifying statistasgumptions [200]. The
main steps in this theory proceed as follows:

Consider the Hamiltonian corresponding to a generic system

H(J,0,t) =Ho(J) + eH1(J,0,t) (8.11)

The Hamiltonian consists of two parts: the integrable pig() that is a function of
the constants of the motiahof a particle moving in a prescribed equilibrium field,
and

Hi(J,0,t) = ;%(J)éme*“’m” (8.12)
m=£0

which includes perturbations to the equilibrium fie®lare the angles canonically
conjugate to the actions andt is time. The complex frequenay,, = tm + iym
allows for steady statey, = 0), growing ¢m > 0), or damped ¥, < 0) waves.
Note that for the case of a charged patrticle in a toroidalpéasn the guiding cen-
ter approximation for an axisymmetric equilibrium [189%)etthree actions are the
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magnetic moment, the canonical angular momentum, and tbel& flux enclosed
by a drift surface. The respective conjugate angles areyttepbase, azimuthal an-
gle, and poloidal angle. The perturbation terms correspmabkctromagnetic waves
ande is an ordering parameter indicating that the effedtipis perturbative.

According to the proposed kinetic theory [200], the opear&tan Eq. (8.10) is
given by

D= 3 MMAF N

=0 Qm(3)2+V3 {Vm [1—e "' cos(Qm(It)] +

+Qm(3)e*vmtsin(gm(3)t)} (8.13)

whereQm(J) = m- wp(J) — wm andmm is a dyadic.

In the limitt — o andymt — 0, Eq. (8.13) leads to a time-reversible evolution
equation. In contrast to the traditional quasilinear thig840, 117], the kinetic evo-
lution equation (8.10) with the time-dependent operatatIBdoes not distinguish
between resonant and nonresonant particles and inclutlegitmoving and damped
waves. In the vicinity of resonances given By, = 0, D is continuous and non-
singular even whep,, = 0 and the width of the resonance decreases with time.

This kinetic theory is expected to provide an accurate dgsen of many com-
plex realistic systems of technological interest. Amorgyrtiost important ones are
fusion plasmas, where charged particles are confined byiae stagnetic field and
interact with either static magnetic perturbations orymdyations by radio frequency
waves injected to heat the plasma, drive the current, angreag local instabilities
[189, 201]. In addition, the theory is directly applicabtespace plasmas, particle
acceleration studies and, in general, any Hamiltoniaregysthere chaotic motion
coexists with regular motion in a strongly inhomogeneoussgtspace.
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