
Shape Analysis for Complex Systems using Information
Geometry tools

Angela De Sanctis, Antonio Gattone
a.desanctis@unich.it, gattone@Economia.uniroma2.it

Universit̀a “G. d’Annunzio”, Universit̀a “Tor Vergata”

Mathematical Modeling of Complex Systems, Pescara, 16-27 July 2012 – p.1/31



Introduction: Differential Manifolds

The differential manifolds are the object of study in the Differential
Geometry.

They are topological spaces locally euclidean then mapped by local
coordinates. Differential Geometry proves that all the consequent
analysis is intrinsic, that is it does not depend on the choice of the
coordinates.

For example the M-Shere is locally equivalent to the M-dimensional
euclidean space but not globally.
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Introduction: Statistical Manifolds

The statistical manifolds are the object of study in the Information
Geometry.

They are families of probability density with its local coordinates
defined by the model parameters

F = {p(x,θ)} ∼ Θ = {θ}

For example, the normal distribution:

p(x) = 1√
2πσ exp{− (x−µ)2

2σ2 } (1)

is univocally identifiable with the parameters µ∈ R and σ > 0, where
these represent respectively the mean and the standard deviation.
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Introduction: Statistical Manifolds

Then we can identify the family of the normal distributions with the
half-plane

Θ = {(µ,σ) : µ∈ R,σ > 0}

More in general a bivariate Gaussian density can be represented as a
single point with coordinates θ = (µ1,µ2,σ1,σ2) on 4-dimensional
manifold which is the cartesian product Θ1×Θ2 of two half planes.

The most famous statistical manifolds are the Exponential Families,
among those there are the Normal and Poisson Families and also the
Mixture Family.
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Introduction: Fisher-Rao metric

We recall that a riemannian metric on a manifold means a metric
"compatible" with the system of local coordinates.

From Information Geometry we also know that Fisher information
matrix induces a riemannian metric on the statistical manifold, called
the Fisher-Rao metric with metric tensor:

gi j (θ) =
∫

p(x/θ) ∂
∂θi logp(x/θ) ∂

∂θ j logp(x/θ)dx (2)

ds2 =
M

∑
i, j=1

gi j (θ)θiθ j

It is possible to prove that it is the only one consistent with the
Maximum Likelihood Principle.
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Introduction: Fisher-Rao metric

For the family of the normal distributions, simple calculations lead to:

g11(µ,σ) =
1
σ2

g22(µ,σ) =
2
σ2

g12(µ,σ) = g21(µ,σ) = 0

More in general, for bivariate gaussian densities θi = (µi ,σi), (i = 1,2)

the Fisher-Rao metric is ds2 = ∑2
i=1

[

(dµi)
2 +2(dσi)

2
]

/σ2
i
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Geodesics distance

It thus follows that, in this case, the distance with respect to the
Fisher-Rao metric is

d{(µ1,σ1)(µ2,σ2)} =
√

d2
1 +d2

2

where

di =
√

2cosh−1

[

(µ1i −µ2i)
2 +2σ2

1i +2σ2
2i

4σ1iσ2i

]
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Geodesics

Differential Geometry gives us a concept of curvature which is intrinsic
that is depends only on the manifold, without considering how it
embeds in an euclidean space (Egregium Theorem).

Besides in a riemannian manifold, given two points, there exists only
one curve, called geodesic, which connects them locally minimizing the
distance.
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Geodesics

On a statistical manifold the distance is the Fisher information,
therefore it means such a curve is what we can obtain by the available
information.

It is possible to prove that, with respect to Fisher metric, for the Normal
Family the geodesics are those of the Hyperbolic Plane that is
half-circles with the center on µ-axis and vertical lines.
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Patterns

One of the most important properties of Complex Systems is the
forming of patterns: a band of fish in the sea, a flight of birds in the sky,
the dunes in the desert are only few examples.

These patterns are not fixed in time but they evolve with the dynamics of
the Complex System and vary according to its level of self-organization.

The goal is modeling them statistically, using Information Geometry
tools, describing step by step their changes. In particular we wish to
discover an index which is capable to understand the trend in the
self-organization phenomenon and capture eventual crisis signals.
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An example of Complex System

The macula is the central part of the retina in the eye, where the
distinct vision occurs.

A frequent pathology, due to the degrading of that Complex System, is
the irreversible reduction of the vision in people more of 65 years old;
this pathology is called macular degeneration due to the age.

Ophthalmologists distinguish the evolution of the disease in two
phases: an initial form, called dry, and a terminal form, which can be
new-vascular or for atrophy.

The first one is characterized by the presence of some retina’s
damages, such as drusen, and areas of change of the pigmentation of
the epithelium. In this phase people continues to have a discreet level
of vision.

Mathematical Modeling of Complex Systems, Pescara, 16-27 July 2012 – p.11/31



An example of Complex System

On the contrary, the second phase produces a serious loss of vision’s
capacity and it is characterized by the appearance of a central scotoma
produced by the development of anomalous new-vessels near the
macula. The atrophy is characterized by loss of the retina’s normal
stratus.

The diagnosis of macular degeneration is made by observing the ocular
fundus with ophthalmoscopy and by using recent imaging techniques,
such as fluor-angiography. Each of such techniques consents the view
of the typical damages, their classification, supervision in time and this
is very useful to value the efficacy of the therapies.
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Shape

Consider a geometric object (e.g. a triangle, a collection of points in the
plane, a human head).

The shape of the object consists of all information invariant under
similarity transformations (i.e. translation, rotation and scaling).

Data from a shape are often realized as a set of points.
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Landmarks

Many statistical methods allow us to extract some points, which are
representative for the shape and are called landmarks. We can mean
these landmarks as the centers of the surrounding points.

Landmark coordinates are stored in the K×M configuration matrix X
with generic element xkm (m-coordinate of the k-th landmark),
k = 1. . .K, m= 1, . . .M

K=number of landmarks

M=dimension
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GMM shape representation

In this representation, the shape of the configuration X is represented
by a K-component Gaussian mixture model (GMM)

h(x;θ) =
K

∑
k=1

pk f (x;µk,Σk)

where x is a generic M-dimensional vector

f (x;µk,Σk) = (2π)−
M
2 |Σk|−

1
2 exp

{

−1
2(x−µk)

′Σ−1
k (x−µk)

}

θ is the set of mixture parameters θ = {pk,µk,Σk}K
k=1
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GMM Shape representation

Peter and Rangarajan identify K landmarks of the same shape with the
mean points of a K-component Gaussian mixture model (GMM).

They consider planar shapes (M = 2) and set for k = 1. . . ,K:

pk = 1
K , µk = {xk1,xk2}, Σk = Σ = σ2I2

The landmark positions are the means for:

p(x|θ) = 1
2πσ2K ∑K

i=1exp{− ‖x−µk‖2

2σ2 } (3)
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Peter and Rangarajan approach

In the absence of any a priori knowledge, it is acceptable to put in the
model equal weight 1

K to every landmark.

The variance σ captures uncertainties that arise in landmark placement
and/or the natural variability across a population of shapes. Peter and
Rangarajan consider σ as a free parameter, which is isotropic across all
components. Therefore they only use the means of a (GMM) as the
manifold coordinates.
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New approach

On the contrary, we consider variances as further coordinates for the
landmarks of a complex shape, compatibly with the Information
Geometry theory. It is clear that a landmark with a big variance informs
us that it is not too much representative of its surrounding points.
Numerical simulations prove that, in this case, the image shows blots,
as a photocopy from a damaged machine.

On the other side, we also remove the isotropic hypothesis. Indeed, for
example, when we have a photograph unfocused on a part of it, we can
not state that the information we deduce is uniform.
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New approach

The model of Peter and Rangarajan, even if numerically more simple,
induced a loss of information in the Fisher sense. But, in some cases, it
is reasonable to use that, in particular when the change of the shape is
due to external forces. Indeed the Authors refer to "deformation of the
external space" and unify representation and deformation.

On the contrary, we are interested in the natural evolution of the shape
produced by internal forces to the system. This is very important, for
example in medicine, indeed often the dimmed or stained imagine is
the warning of some problems for the involved organ, as we saw in the
macular degeneration.
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The new model

Set for k = 1, . . . ,K:

pk = 1
K , µk = {xk1,xk2}, Σk = σ2

kI2

with σ2
k = (σ2

k1,σ2
k2) (variances of the k-th landmark coordinates)

Thus,

h(x|θ) = 1
2πK ∑K

k=1 |Σk|−
1
2 exp{−1

2(x−µk)
′Σ−1

k (x−µk)} (4)
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GMM Geodesic computation

The Information Matrix of the GMM density

h(x;θ) =
K

∑
k=1

pk f (x;µk,Σk)

is given by

g(θ) =
K

∑
k=1

pkgk(θk)

θk = (µk,Σk) are the parameters of the k-th component of the mixture
(we don’t consider the term related to the probabilities pk).
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Application: cluster analysis of shapes

Data set from Dryden and Mardia (1998): T2 mouse vertebra data

The second thoracic vertebra is a bone lying along the backbone of the
mouse and 6 landmarks have been identified by an expert along its
outline.

We consider three groups: small, control and large groups of mice,
respectively.

We use the geodesic distance and cluster the 76 mice.
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T2 mouse vertebra data
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T2 mouse vertebra data
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T2 mouse vertebra data
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Cluster analysis on T2 mouse vertebra data

We consider the pairwise distances of all shapes in order to evaluate
the discriminative power of the proposed Fisher-Rao metric.

Distance matrix was applied in a hierarchical clustering algorithm.

Three distances were used:

• the proposed Fisher-Rao distance (FR∗)

• Fisher-Rao distance with fixed variance (FR)

• the Procrustes distance (shape distance) (PD)
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Results of the cluster analysis

Distance PD FR∗ FR−Q1 FR−Q2 FR−Q3

aRand-index 0.223 0.964 0.867 0.478 0.478

classification error 0.381 0.013 0.052 0.118 0.118

Q1, Q2 and Q3 denote different values for the variance parameter (first,
second and third quartile).

aRand is the adjusted Rand index of Hubert and Arabie (1985) for
comparing partitions.
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Possible applications

We deduce that the new model allow us a better reconstruction of the
shape with respect to that of Peter and Rangarajan or the classical
models of shape analysis.

As possible application we observe that, if two shapes are represented
by mixture models, whose parameters map points on the statistical
manifold, it is possible to use Fisher-Rao metric to construct a geodesic
between them which will inform us on the intermediate shapes
(landmarks and their variances). That intrinsic path will drive the
reconstruction of the real intermediate shapes in the external space.

Mathematical Modeling of Complex Systems, Pescara, 16-27 July 2012 – p.28/31



Possible applications

We note that σi(t) analysis gives us information regarding the
dispersion of the real points of the shape around their means µi(t),
when t is varying.

If σi(t) increases in time, we lose the detailed resemblance to the
original shape and, when it is a complex pattern, we can deduce a loss
of the self-organization as connecting phenomenon of the system.

Besides, the study of the instantaneous speed of θi(t) allows us, in the
short time, a forecast of the evolution of the pattern and of the eventual
tendency to break up of the system.
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