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Abstract

We introduce rules which describe how events are updating the state

spaces introduced. The rules are either with respect to a local structure

where neighborhood (not necessarily in ’physical space’) plays a role, or

the rules apply equally to every object in the system. The latter is

equivalent to rules defined on the complete graph. In the chemical

literature rules applied to the complete graph are called ’reactions’.

Reaction kinetics serves us as a blueprint for rules which re independent

of a connectivity structure and therefore need not keep track of the

location of an entity.
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Opinion formation
We assume there are 2 possible transformations of n many individuals

having 2 states only. The ’stoichiometric coefficient’ 1 is interpreted as

’anyone with the same probability, but the same’. The neighborhood

operator N (S1
1 ,S

0
1 ) takes into account all 0-state neighbours of S1

1 .

UN (S1
1 ,S

0
1 ) choses only one 0-state neighbour with a uniform probability

distribution.

1S1
1 →δ 1S0

1 , (1)

1S1
1 +

∑
N (S1

1 ,S
0
1 )

S0
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1 +
∑

N (S1
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0
1 )
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1 , (2)

or the second rule better replaced by

1S1
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Individual Interaction Graph

In the molecular interaction graph each individual is represented as a

node. Each individual has two states indicated by black and white. The

number of nodes is fixed. In this example the degree distribution is such

that every individual has exactly 4 links.
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We assume there are r many posssible transformations of
molecules into each other, including also the possibility that
molecules leave or enter the system. We also assume that only
integer combinations of molecular species can be formed. In this
case we can write each event/reaction rj in the form

α1jS1 + · · ·+ αsjSs →kj β1jS1 + · · ·+ βsjSs , (4)

with j = 1, ..., r .
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Molecular Interaction Graph

In the molecular interaction graph each molecule is represented as a

node. There are different types of molecules which are color coded. If

each type could react with each type the molecular interaction graph

would always be the complete graph.

Molecules are added and 
annihilated after each 
reaction event.
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Pair approximation
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Equilibrium analysis

Shown are equilibrium states for different values of λ = ν
δ and their

approximations.
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Cluster approximation
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Random Network Simulation and Approximation
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Definition
[Formal Sum]
Let I be an arbitrary finite index set. We denote by ZI

+ the set of
all formal sums with nonnegative integers, i.e.

ZI
+ := {σ =

∑
i∈I

σi i | σi is a nonnegative integer}.
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The modeling idea of the formal sum is to count with σi the
number of times objects in the finite set I are occuring in some
system or are involved in some system during some event. In case
of reaction networks the set of reacting species (always denoted by
S) is the natural choice for I as the number of such species is
finite for all practical purposes. Usually the number of molecules
that are reacting should be countable, motivating the choice of
integers to define the formal sum. There is however frequently
another choice made in the literature, replacing ZI

+ by RI
+ which is

the set of formal sums constructed with the nonnegative real
numbers, i.e. σi ∈ R+, see Definition 2.
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Definition
[Chemical Reaction Network]
A chemical reaction network is a triple (S, C,R), where S is the
set of chemical species, C ⊆ ZS+ is the set of complexes, and R
contains ordered binary relations on C, each denoted P → P ′,
representing the set of reactions in the network. Here P is called
the source complex and P ′ is called the target complex of the
reaction P → P ′. Moreover, the set R must satisfy the following
three conditions:

1. It cannot contain elements of the form P → P.

2. For any P ∈ C there exists some P ′ ∈ C such that either
P → P ′ or P ′ → P.

3. The union of the supports of all P ∈ C is S.
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It is useful to fix the dimensions of the different sets occuring in
Definition 3. These conventions will be valid for the whole chapter.
First the set of species S contains s ∈ N elements, i.e. |S| = s.
We can refer to single species by writing S = {S1, . . . ,Ss}. We
assume there are r many possible transformations of molecules into
each other, including also the possibility that molecules leave or
enter the system. This means |R| = r . Note that Definition 3
assumes that only integer combinations of molecular species are
formed. In this case we can write each event/reaction rj with the
help of two formal sums as

α1jS1 + · · ·+ αsjSs → β1jS1 + · · ·+ βsjSs , (5)

with j = 1, ..., r . The integer coefficients αij and βij represent the
number of Si molecules participating in j-th reaction at reactant
and product stages, respectively. They are called stoichiometric
coefficients (of the source and target complex, respectively).
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Refering to Definition 3 we have introduced the notation
P = α1jS1 + · · ·+ αsjSs and P ′ = β1jS1 + · · ·+ βsjSs for some
P,P ′ ∈ C being in a source-target relationship defined by the j-th
reaction. Instead of using formal sums, an object introduced in the
chemical literature, we can equivalently associate complexes with
column vectors of length s. We write

P =

α1j
...
αsj

 , P ′ =

β1j...
βsj

 .
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Both the formal sum and the vector notation for complexes will be
used interchangeably. We can also label and count the elements in
C. If we set |C| = c then c is less or equal to 2r , depending on
whether some source and target complexes are identical in different
reactions. With this convention we write

C = {C1, . . . ,Cc}.

Note in this notation we do not differentiate between the reactant
(source) and product (target) aspect (the α and β notation for
reactions above, respectively), but only look inside which
complexes these species dependent integer coefficients appear. We
do however fix in a moment an ordering of the complex set after
fixing an order of the set of reactions, see below. The
stoichiometric coefficients buiding up all complexes are then
assembled inside a (s × c)-matrix V. We call V = (C1, . . . ,Cc) the
complex matrix.
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Using the column vector notation we should be able to rewrite the
definition of the stoichiometric matrix N as well. There is however
a notational difficulty in case c < 2r , i.e. if some complexes of the
system (S, C,R) are identical in different reactions. To solve this
problem we fix an ordering of complex indices in the following way:
First we fix a reaction set ordering, running from i = 1 to i = r .
Next C1 is always the source complex of reaction 1, C2 the target
complex of reaction 1 (note that because ’P → P’ is not allowed
indeed C1 6= C2). We then increase index i by one while running
through all reactions in source to target direction and encountering
a complex that is not equal to a previous one already having a
label. Let us introduce the notation where we introduce indices
js(i) and jt(i), with i running from i = 1 to i = r , so running
through all reactions.
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Moreover js(i) is defined as returning the index of the source, and
jt(i) the index of the target complex of reaction i . With this
notation we define

N := (Cjt(1) − Cjs(1), . . . ,Cjt(r) − Cjs(r)).

The matrix N is called the stoichiometric matrix. It defines one of
the fundamental relationships of reaction networks.
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It is convenient to introduce the stoichiometric subspace T of the
set of reactions R, closely linked to the stoichiometric matrix N :

T := span{P ′ − P|P → P ′ ∈ R}
= span{Cjt(1) − Cjs(1), . . . ,Cjt(r) − Cjs(r)}.

After introducing dynamics on the reaction system (S, C,R) later,
for example by introducing reaction events, we will see that the
stoichiometric subspace T ⊂ Rs is the only reachable part of the
state space, i.e. all possible species numbers, and after a
continuum limit, also species concentrations are confined to T .
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An illustrative example we consider throughout this chapter is a
well-known model describing the activity of the mitogen-activated
protein kinase (MAPK). MAPKs play an important part in the
signalling processes of eukaryotic cells by intervening with a
multitude of proteins and phosphorylating them. They themselves
undergo phosphorylation by a MAPK/ERK kinase (MEK) and
dephosphorylation by a phosphatase. In this model we use a
notation for species adapted to the biochemical interpretation. Let
Si , with i = 0, be the MAPK kinase, and with subscripts i = 1 and
i = 2 the molecules with single and double phosphorylation,
respectively. The symbols E and F represent MEK and the
phosphatase. The reaction scheme for the model is:

E + S0 � ES0 → E + S1 � ES1 → E + S2

F + S2 � FS2 → F + S1 � FS1 → F + S0.
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Therefore we have with the obvious notational identifications:

S = {S1, . . . ,S9} = {E ,F ,S0, S1,S2,ES0,ES1,FS1,FS2},

i.e. s = 9 in this example. Moreover, using the formal sum
notation, we have

C ={C1, . . . ,C10}
={E + S0,ES0,E + S1,ES1,E + S2,F + S2,FS2,F + S1,FS1,F + S0},

i.e. c = 10 in this example, and all stiochiometric coefficients are 1
and therefore do not appear. There are 12 reactions, i.e. r = 12.
Note that we used the symbol ” � ” to denote a reversible
reaction. This means there are two reactions in opposite direction
of each other, the complexes left and right of these arrows can be
simultaneously target and source complexes.
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We are now able to introduce a first graph associated with reaction

networks, the directed reaction graph
−→
G R = (V ,

−→
E ). We simply

define the vertex set V−→
G R

as the set of complexes of the reaction

network, i.e. V (
−→
G R) = C. There is a directed edge between two

complexes whenever there is a reaction, pointing from the source
complex to the target complex. For our MAPK example reaction
system this means

−→
E (
−→
G R) = {(C1,C2), (C2,C1), (C2,C3), (C3,C4), (C4,C3), (C4,C5),

(C6,C7), (C7,C6), (C7,C8), (C8,C9), (C9,C8), (C9,C10)}.
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C10

C1 C3C2 C5C4

C7C6 C9C8

Figure: The directed reaction graph
−→
G R : of the MAPK reaction network

example.
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11 11 1 11 11 11 11 11 1

S1 S3 S2S5S4 S7S6 S9 S8

C10C1C3 C2C5 C4 C7C6 C9C8

Figure: The undirected bipartite complex-species graph GCS of the
MAPK reaction network example.
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A natural way to describe the changing number of molecules of
each species1 Si is by introducing a continuous-time Markov jump
process for each reaction. Let Ni (t) be a random variable that
represents the number of molecules of species Si at time t, and let
N denote the vector of Ni s. Further, let P(t, n) be the joint
probability that N(t) = n, i.e., N1 = n1,N2 = n2, ...,Ns = ns .
Clearly the state of the system at any time is now a point in Zs

0,
where Z0 is the set of non-negative integers.

1That is to assign a law of evolution to the system’s state which components
are attached to each node and representing a species’ number occuring in the
reaction volume.
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Formally the master equation that governs the evolution of P is
then

d

dt
P(t, n) =

∑
m∈S(n)

R(m, n)·P(t,m)−
∑

m∈T (n)

R(n,m)·P(t, n), (6)

where R(m, n) is the probability per unit time of a transition from
state m to state n, R(n,m) is the probability per unit time of a
transition from state n to state m, S(n) is the set of all states that
can terminate at n after one reaction step, and T (n) is the set of
all states reachable from n in one step of the feasible reactions.
The notation is meant to suggest the source and target states at n;
one could also call S(n) the predecessors of state n and T (n) the
successors of state n. The predecessor states must be non-negative
for production reactions and positive for conversion, degradation
and catalytic reactions.
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Similar bounds on the target states are naturally enforced by zero
rates of reaction when the reactants are absent. The sets S(n) and
T (n) are easily determined using the reaction graph GR . Let again
C = {C1, . . . ,Cc} be the set of complexes, i.e. the nodes of GR .
Let rl ∈ E (GR) (the edge set of GR), 1 ≤ l ≤ r , whenever there
exist two complexes with a reaction defined between them. Define
the incidence matrix2 I by

Iil =


+1 if rl is incident at Ci and is directed toward it,
−1 if rl is incident at Ci and is directed away from it,
0 otherwise.

2This is a matrix with c rows (number of complexes) and r columns
(number of reactions).
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The sets S(n) and T (n) can now be determined using the GR

graph structure. It follows from the definition of V and I that the
lth reaction rl between say Ci → Cj induces a change
∆n(l) = VI(l) in the number of molecules of all species after one
reaction event, where the subscript denotes the lth column of I.
Therefore the state m = n − VI(l) is a source or predecessor to n
under one step of the lth reaction. Similarly, states of the form
m = n + VI(l) are reachable from n in one step of the lth reaction.
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With this insight we can now sum over reactions instead of sources
and targets to get

d

dt
P(t, n) =

r∑
l=1

Rl(n−VI(l))·P(t, n−VI(l), t)−
r∑

l=1

Rl(n)·P(t, n),

(7)
with Rl(n) now being the probability per unit of time that a
reaction event rl is taking place and the numbers of the different
species in S before the event is given by the vector n. The master
equation is now conforming to the complex structure and describes
the reaction network on the microscopic level. It can be used to
investigate how noise is occurring in the system when particle
numbers are small, and how this noise depends on the network
structure. We can use the master equation for direct simulation of
the reaction network.
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