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Abstract

Definition of basic structures and events. The difference between events
and structures is a matter of modeling. Structures are defined as
permanent, their ontology is that of classes or types with certain
characteristics. Events on the other hand are singularities inside the time
arrow which as the word suggests is assumed to have a direction and
furthermore assumed to be continuous.
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Basic remarks

e A structure is usually defined as consisting of two sets, a set of
types, and a set of relations between types. The types are usually
fixed for a given model, they are assumed not to change.
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Basic remarks

e A structure is usually defined as consisting of two sets, a set of
types, and a set of relations between types. The types are usually
fixed for a given model, they are assumed not to change.

e Also the relations between types are in most models fixed. But it
makes sense sometimes to let either types or relations change over
time, typically triggered by an event. Evolutionary models will be an
example.

e Relations between types can always be interpreted as memberships
of the types. Memberships can be symmetric or asymmetric.
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Basic remarks

® In the symmetric case every member is equal in the relationship and
therefore there is no order in the set describing the membership. In
the asymmetric case there is an order in the set, any permutation of
types would yield a completely different model or interpretation.
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Basic remarks

® In the symmetric case every member is equal in the relationship and
therefore there is no order in the set describing the membership. In
the asymmetric case there is an order in the set, any permutation of
types would yield a completely different model or interpretation.

e The basic ontology of a type is that it can either exist or not exist.
This is a basic modeling choice. The modeler creates her or his own
interpretation of reality. In more complex models there will be
additional structure. One of the first steps usually taken is that
types become populated, i.e. there is a number attached to the
type. In basic models this number is an integer, but it can become a
real number by scaling.
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Graph Theory as a Special Case
A graph G (or network) is a set of points or nodes (always called vertices
in graph theory) V in space which are interconnected by a set E of lines
or links (always called edges in graph theory), i.e. G = (V, E).

Figure: Example of an undirected graph G.

Here G = ({v1,v2.v3, s}, {e1, e, €3, €1}). Let |S| denote the number of
elements of a set S. If both |V/| < 0o and |E| < oo then the graph G is
called finite. For any edge e joining the vertices v; and v; we set

e = (vj, v;). Because so far the vertices have no direction, we have also
e = (v}, v;). In this case G is called undirected.
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An undirected graph describes a binary relationship between a set
of vertices.

e If an edge e has v as en end-point, then e is called incident
with v.

A very important concept:

Definition
The degree of a vertex v, written d(v), is the number of edges
incident with v.
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An undirected graph describes a binary relationship between a set
of vertices.

e If an edge e has v as en end-point, then e is called incident
with v.
e If (u,v) € E, uis said to be adjacent to u.

e Two edges are adjacent if they have a common end-point.
A very important concept:

Definition
The degree of a vertex v, written d(v), is the number of edges
incident with v.
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Let k := d(v) and P(k) be the degree frequency (which can be
interpreted as a degree probability distribution) in different types of
graphs.
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Figure: Examples of different types of degree distributions.
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Algebraic Graph Theory

Graphs can be analysed algebraically (a very fruitful concept!) by
introducing adjacency and incidence matrices. In a graph G = (V, E)
define an (n x n) symmetric matrix A = (a;;) by a;j = 1if (v;,v;) € E
and zero otherwise. This adjacency matrix encodes all information on G.
Powers of A can be used to calculate the number of paths between
vertices. The coefficients of the characteristic polynomial of A encode
information on the number of edges, triangles (the number of times the
complete subgraph K3 wth 3 vertices occurs in G) etc.
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The adjacency matrix can even be analysed visually: Comparison
of a random graph with the C. elegans neuronal network.

C. Elegans network Random Network
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Directed Graphs
After giving the graph G = (V/, E) an orientation (of the edges) the
result is a directed graph G. Instead of a binary relationship such a graph
can model hierachical relations, like 'x is more dominant than y', 'x is
influencing y', 'x regulates y’, etc. The adjacency matrix A of G becomes
in general non-symmetric. We can define an (n x m) incidence matrix
D = (dj) by djj = +1 if v; is the positive end of e;, djj = —1 if v; is the
negative end of e;, and zero otherwise. The incidence matrix D resulting
from giving an arbitrary orientation to G has rank n — ¢, where c is the
number of components of G.
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Generalised Structures: Simplicial Complexes

A (realization of a) simplicial complex can be interpreted as a
generalization of a graph going beyond binary structures.
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Generalised Structures: Hypergraphs

A (realization of a) hypergraph can again be interpreted as a
generalization of a graph going beyond binary structures. But one can
always restrict to graph theory: hypergraphs are equivalent to bipartite
graphs. One can also see that hypergraphs are more general than
simplicial complexes.
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Beyond Discrete Structures

The first illustration of the yeast proteome network. Due to evolution this
is in reality a growing network. It makes sense to introduce weights on
this graph. For this additional measurements are necessary, for example
protein size and binding affinities.
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Weighted Graphs

The next mathematical possibility is to attach state spaces to the (static
or evolving) graph, either to the vertices or to the edges. Let X be a
finite set (i.e. X is either the set of vertices V or edges E) and

f: X = K with K =N,R,C. Usually the set of all such functions f
form a vector space, i.e. the length of roads (the traveling salesman)
usually adds up etc. But this depends on the model. The general idea of
introducing state spaces is to attach numerical values to the
relationships, or to make these relationships depending on some
quantitative measure of the node (like size, richness, status etc.)

Generalisation: Vector-valued or function state spaces defined on K.
Data: ... (much more difficult, quantification of relationships)
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Weighted Graphs as Networks with State Spaces

Weighted graphs are best interpreted as structures on which state spaces
are defined. The next step then will be to assign a law or mathematical
equation which is updating the state of the system in the combined state
space, which is the Cartesian product of all individual state spaces.

concentration

concentration
concentration
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Final Remarks

o The higher the dimension of the total state space the higher the
degrees of freedom of the system, the more difficult to analyze the
model mathematically (in general, but this depends on the 'law of
motion’ ascribed to the state space updates).
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Final Remarks

e The higher the dimension of the total state space the higher the
degrees of freedom of the system, the more difficult to analyze the
model mathematically (in general, but this depends on the 'law of
motion’ ascribed to the state space updates).

e The more degrees of freedom the more data are needed to 'check’
the model. Every model is a scientific hypothesis which according to
Popper must be seeked to be falsified (a negative attitude is
therefore scientific!)

e This also means every model in complex systems and elsewhere has
an information theoretic aspect.
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