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Abstract

Definition of basic structures and events. The difference between events

and structures is a matter of modeling. Structures are defined as

permanent, their ontology is that of classes or types with certain

characteristics. Events on the other hand are singularities inside the time

arrow which as the word suggests is assumed to have a direction and

furthermore assumed to be continuous.
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Basic remarks

• A structure is usually defined as consisting of two sets, a set of
types, and a set of relations between types. The types are usually
fixed for a given model, they are assumed not to change.

• Also the relations between types are in most models fixed. But it
makes sense sometimes to let either types or relations change over
time, typically triggered by an event. Evolutionary models will be an
example.

• Relations between types can always be interpreted as memberships
of the types. Memberships can be symmetric or asymmetric.
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Basic remarks

• In the symmetric case every member is equal in the relationship and
therefore there is no order in the set describing the membership. In
the asymmetric case there is an order in the set, any permutation of
types would yield a completely different model or interpretation.

• The basic ontology of a type is that it can either exist or not exist.
This is a basic modeling choice. The modeler creates her or his own
interpretation of reality. In more complex models there will be
additional structure. One of the first steps usually taken is that
types become populated, i.e. there is a number attached to the
type. In basic models this number is an integer, but it can become a
real number by scaling.
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Graph Theory as a Special Case
A graph G (or network) is a set of points or nodes (always called vertices
in graph theory) V in space which are interconnected by a set E of lines
or links (always called edges in graph theory), i.e. G = (V ,E ).

Figure: Example of an undirected graph G .

Here G = ({v1, v2.v3, v4}, {e1, e2, e3, e4}). Let |S | denote the number of

elements of a set S . If both |V | <∞ and |E | <∞ then the graph G is

called finite. For any edge e joining the vertices vi and vj we set

e = (vi , vj). Because so far the vertices have no direction, we have also

e = (vj , vi ). In this case G is called undirected.
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An undirected graph describes a binary relationship between a set
of vertices.

• If an edge e has v as en end-point, then e is called incident
with v .

• If (u, v) ∈ E , u is said to be adjacent to u.

• Two edges are adjacent if they have a common end-point.

A very important concept:

Definition
The degree of a vertex v , written d(v), is the number of edges
incident with v .
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Let k := d(v) and P(k) be the degree frequency (which can be
interpreted as a degree probability distribution) in different types of
graphs.

Figure: Examples of different types of degree distributions.
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Algebraic Graph Theory
Graphs can be analysed algebraically (a very fruitful concept!) by

introducing adjacency and incidence matrices. In a graph G = (V ,E )

define an (n × n) symmetric matrix A = (aij) by aij = 1 if (vi , vj) ∈ E

and zero otherwise. This adjacency matrix encodes all information on G .

Powers of A can be used to calculate the number of paths between

vertices. The coefficients of the characteristic polynomial of A encode

information on the number of edges, triangles (the number of times the

complete subgraph K3 wth 3 vertices occurs in G ) etc.
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The adjacency matrix can even be analysed visually: Comparison
of a random graph with the C. elegans neuronal network.
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Directed Graphs
After giving the graph G = (V ,E ) an orientation (of the edges) the

result is a directed graph ~G . Instead of a binary relationship such a graph

can model hierachical relations, like ’x is more dominant than y’, ’x is

influencing y’, ’x regulates y’, etc. The adjacency matrix A of ~G becomes

in general non-symmetric. We can define an (n ×m) incidence matrix

D = (dij) by dij = +1 if vi is the positive end of ej , dij = −1 if vi is the

negative end of ej , and zero otherwise. The incidence matrix D resulting

from giving an arbitrary orientation to G has rank n − c , where c is the

number of components of G .
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Generalised Structures: Simplicial Complexes

A (realization of a) simplicial complex can be interpreted as a

generalization of a graph going beyond binary structures.
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Generalised Structures: Hypergraphs

A (realization of a) hypergraph can again be interpreted as a

generalization of a graph going beyond binary structures. But one can

always restrict to graph theory: hypergraphs are equivalent to bipartite

graphs. One can also see that hypergraphs are more general than

simplicial complexes.

clustering coefficient may be defined. In the
author–publication hypergraph, clustering
coefficients of both vertices and hyperedges
are higher than expected by chance [30].
Another proposal for clustering coefficients
in hypergraphs can be found in [31]. In
addition to such local measures, we may also
ask for global or semi-global properties. A
common question in the graph case is to
identify clusters, often denoted as commu-
nities, within the graph. Various methods
have been proposed in this context, with
normalized cut [32] and graph modularity
[33] being two of the most popular ones,
resulting in applications such as the search
for modular structures, ideally protein
complexes, in PPI networks [34]. The
former method has already been extended
to hypergraphs [35].

In order to test for significance of certain
structures, e.g., network motifs [36] or
scaling structures [26,27], good null models
are important. Such null models describe
random occurrences of structures. One
typically wants to keep some statistics of
the network fixed while at the same time
randomly sampling from its representation-
al class. This results in the notion of random
graphs with certain additional properties
such as Erdös-Rényi [37] or Barabási-
Albert [38]. Extensions of random models,
in particular to hypergraphs, would focus
on generative models, which increasingly
find applications at least in the graph case
[26,39]. In the context of hypergraphs, first
models have already been proposed [40].

What could be potential biological
applications of hypergraph statistics? Giv-

en the fact that in gene regulatory
networks statistical properties are decisive
[27], it stands to reason that if one wants
to combine two types of regulations or
interactions, e.g., gene and microRNA
regulation, the resulting hypergraph ought
to be analyzed from a hypergraph statistics
point of view. Another example is the
human–disease network [41], consisting of
disease genes and related diseases. Often,
analysis and visualization are done on the
projected versions, either onto diseases or
genes. However, node statistics or motif
detection [36] may be performed in the
hypergraph itself. The latter is already
implemented, e.g., in FANMOD [42], a
motif-finding tool ready to deal with n-
partite networks. Finally, we want to
mention a hypergraph analysis of a

Figure 2. Generating a hypergraph null model by rewiring. Choose two distinct hyperedges and two different vertices contained in either of
the two. Then swap them. Clearly this operation keeps both degree distributions fixed. After a certain number of iterations, the thus-generated
Markov chain produces independent samples of the underlying random hypergraph with given degree distributions. In the figure, this is illustrated
using the in-this-case simpler-to-visualize bipartite version. The gray double-arrows indicate edges to be swapped. Each of the three swaps, (A,H2)–
(C,H3), (B,H1)–(E,H3), and (B,H3)–(D,H1), does not change the vertex and edge degrees. Significance analysis of the CORUM protein complex
hypergraph was done in [44] using this idea.
doi:10.1371/journal.pcbi.1000385.g002

PLoS Computational Biology | www.ploscompbiol.org 5 May 2009 | Volume 5 | Issue 5 | e1000385
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The first illustration of the yeast proteome network. Due to evolution this

is in reality a growing network. It makes sense to introduce weights on

this graph. For this additional measurements are necessary, for example

protein size and binding affinities.
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Weighted Graphs

The next mathematical possibility is to attach state spaces to the (static
or evolving) graph, either to the vertices or to the edges. Let X be a
finite set (i.e. X is either the set of vertices V or edges E ) and
f : X → K with K = N,R,C. Usually the set of all such functions f
form a vector space, i.e. the length of roads (the traveling salesman)
usually adds up etc. But this depends on the model. The general idea of
introducing state spaces is to attach numerical values to the
relationships, or to make these relationships depending on some
quantitative measure of the node (like size, richness, status etc.)

Generalisation: Vector-valued or function state spaces defined on K .

Data: ... (much more difficult, quantification of relationships)
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Weighted Graphs as Networks with State Spaces

Weighted graphs are best interpreted as structures on which state spaces

are defined. The next step then will be to assign a law or mathematical

equation which is updating the state of the system in the combined state

space, which is the Cartesian product of all individual state spaces.
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Final Remarks

• The higher the dimension of the total state space the higher the
degrees of freedom of the system, the more difficult to analyze the
model mathematically (in general, but this depends on the ’law of
motion’ ascribed to the state space updates).

• The more degrees of freedom the more data are needed to ’check’
the model. Every model is a scientific hypothesis which according to
Popper must be seeked to be falsified (a negative attitude is
therefore scientific!)

• This also means every model in complex systems and elsewhere has
an information theoretic aspect.
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