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Abstract

The deterministic mass-action kinetics as a large particle number

continuum approximation. Functional analysis related to the continuum

limit. Polynomial differential equations. Some related algebraic geometry,

in particular coordinate transformations. Stability of equilibria and

extremal currents (often called elementary flux modes in the systems

biology community), modularity of mass-action reaction systems.

Bifurcation theory for mass-action systems. The interaction graph and

the graphical representation of feedback loops. The Thomas-Soul

theorem. Other graph concepts: The Feinberg school and the

species-complex-linkage graph. The deficiency theorem. Outlook to

generalisations of reaction kinetics including macro-molecules.
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Deterministic Mass Action Kinetics
Representing reaction schemes by graphs
The reaction graph, and the complex-species graph

Modularity

Bifurcation Theory

Extended Reaction Schemes
The extended master equation
A Circadian clock
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Let there be r reactions R = (R1, ...,Rr ), and different species
S = {S1, ...,Sn}. A single reaction is defined by

n∑
i=1

n−ij Si →
n∑

i=1

n+
ij Si ,

with n−ij and n+
ij being the stoichiometric coefficients of the forward and

backward reactions. The coefficients

nij := n+
ij − n−ij

define the stoichiometric matrix N. The law-of-mass-action induces the
function

v : Rn
+ × Rn

+ → Rr
+

which is the reaction velocity depending on concentrations x = (x1, ...xn)
and the parameter k = (k1, ..., kn) (containing the reaction constants).
The triple S = (X,R, v) is called the reaction scheme. Dynamics:

ẋ = Nv(x , p)
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The molecularity of the species Xi in reaction Rj is encoded in the kinetic
exponent κij . All these exponents are assembed in the kinetic matrix κ.
These exponents can be defined by

κij =
∂ log(vj(x0, kj))

∂ log(x0,i )
.

With this definition in most cases the n−ij equal the κij . Each reaction
rate can be written as

vj(x , kj) = kj

m∏
i=1

xκij .

All these monomials form the reaction vector v we have already
encountered.
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An illustrative example we consider throughout this chapter is a
well-known model describing the activity of the mitogen-activated
protein kinase (MAPK). MAPKs play an important part in the
signalling processes of eukaryotic cells by intervening with a
multitude of proteins and phosphorylating them. They themselves
undergo phosphorylation by a MAPK/ERK kinase (MEK) and
dephosphorylation by a phosphatase. In this model we use a
notation for species adapted to the biochemical interpretation. Let
Si , with i = 0, be the MAPK kinase, and with subscripts i = 1 and
i = 2 the molecules with single and double phosphorylation,
respectively. The symbols E and F represent MEK and the
phosphatase. The reaction scheme for the model is:

E + S0 � ES0 → E + S1 � ES1 → E + S2

F + S2 � FS2 → F + S1 � FS1 → F + S0.
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Therefore we have with the obvious notational identifications:

S = {S1, . . . ,S9} = {E ,F ,S0, S1,S2,ES0,ES1,FS1,FS2},

i.e. s = 9 in this example. Moreover, using the formal sum
notation, we have

C ={C1, . . . ,C10}
={E + S0,ES0,E + S1,ES1,E + S2,F + S2,FS2,F + S1,FS1,F + S0},

i.e. c = 10 in this example, and all stiochiometric coefficients are 1
and therefore do not appear. There are 12 reactions, i.e. r = 12.
Note that we used the symbol ” � ” to denote a reversible
reaction. This means there are two reactions in opposite direction
of each other, the complexes left and right of these arrows can be
simultaneously target and source complexes.
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We are now able to introduce a first graph associated with reaction

networks, the directed reaction graph
−→
G R = (V ,

−→
E ). We simply

define the vertex set V−→
G R

as the set of complexes of the reaction

network, i.e. V (
−→
G R) = C. There is a directed edge between two

complexes whenever there is a reaction, pointing from the source
complex to the target complex. For our MAPK example reaction
system this means

−→
E (
−→
G R) = {(C1,C2), (C2,C1), (C2,C3), (C3,C4), (C4,C3), (C4,C5),

(C6,C7), (C7,C6), (C7,C8), (C8,C9), (C9,C8), (C9,C10)}.
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C10

C1 C3C2 C5C4

C7C6 C9C8

Figure: The directed reaction graph
−→
G R : of the MAPK reaction network

example.
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11 11 1 11 11 11 11 11 1

S1 S3 S2S5S4 S7S6 S9 S8

C10C1C3 C2C5 C4 C7C6 C9C8

Figure: The undirected bipartite complex-species graph GCS of the
MAPK reaction network example.
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For the directed graph the respective adjacency and incidence matrices

are of importance. The first one, Ia contains the information whether the

complex is the initial (entry -1) or the end vertex of an edge (entry 1).

This entry distinguishes reactant complexes from product complexes.

The second one, Ik contains nonzero entries only for initial vertices, i.e.

for reactant complexes. The entries are the weight of the corresponding

edge, which is the rate constant kl .
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The reaction scheme ẋ = Nv can now be rewritten in the form

ẋ = YIaIkΨ(x),

so N = YIa and v = IkΨ(x). In other words the nonlinearities of
the dynamical system defining the reaction scheme can be
investigated in terms of an incidence and two adjacencies matrices,
and a vector of monomials.
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The two graphs defining the system of kinetic equations are on the basis
of a series of graphs, each of them emerging from its predecessor by a
certain formation law, which leads to a weighted directed pseudo-graph.
This directed pseudograph encodes basic information about the stability
of the stationary solutions of the kinetic equations. Its adjacency matrix

is the part of the Jacobian matrix J̃ac(j). This originates from the special
form of the convex Jacobian matrix. Actually all occurring factor
matrices of

J̃ac(j) = N diag(
∑
i

jiEi ) κ
t = Y Ia diag(

∑
i

jiEi ) κ
t

can be considered as adjacency matrices and incidence matrices of

various graphs. The importance of the directed pseudo-graph results

from the fact that instabilities of the stationary solutions of the kinetic

equations can be recognized by its cycles and loops, which are reflected

as matrix structures in the according adjacency matrix. These structures

are called feedback-loops.
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The Interaction Graph
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The so-called Thomas’s first conjecture was proven by Soulé. Here
we restate it in reverse form:

Theorem (Thomas-Soulé)

If a system has no positive cycles in Gint(x) for any x, then it
cannot exhibit multi-stationarity.

Aside from the relationship between cycles and Jacobian entries,
which lead to conditions about positivity of the determinant of −J
and its minors, Soulé made use of Gale-Nikaidô theory to show
that the RHS of the dynamical system is injective and hence
cannot exhibit multistationarity.
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We say that complexes y and y ′ belong to the same linkage class if
there exists an undirected path in the reaction diagram connecting
the two complexes. The deficiency of a reaction network (denoted
by the symbol δ) is defined by the following formula,

δ = c − l − r ,

where c is the number of complexes, l is the number of linkage
classes and r is the rank of the stoichiometric matrix N. It holds
that the deficiency index is always nonnegative. The stochiometric
subspace for a reaction network is the span of the reaction vectors,
namely Im(N). Two vectors y and y ′ are stoichiometrically
compatible if y ′ − y ∈ Im(N). Stoichiometric compatibility is an
equivalence relation that induces a partition of the space Rn

+ into
equivalence classes. Each positive stoichiometric compatibility
class is a space of the form {x0 + Im(N)} ∩ RN

+, where x0 is some
positive initial concentration.
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We state the following version of a deficiency theorem:

Theorem (Deficiency-Zero Theorem)

Consider a mass-action reaction network of deficiency zero.
Assume that the network is weakly reversible. Then the following
alternatives hold for any arbitrary parameter set:

1. The system admits neither a positive equilibrium, nor a
positive periodic orbit.

2. The system has the following properties: each positive
stoichiometric compatibility class contains precisely one
equilibrium, this equilibrium is asyptotically stable, and there
is no nontrivial periodic orbit.

The power of the deficiency-zero theorem is that by the definition
of the deficiency index we can identify a class of networks which
cannot have multiple positive steady steady.
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SCL Graph

Definition
The species-complex-linkage graph GSCL = (V ,G ) is an undirected
bipartite graph which has two types of vertices: The species
(represented by V1) and the complex linkage classes (represented
by V2). We draw an edge from a species vertex to a linkage vertex
if the linkage class has a complex which contains this particular
species.
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SCL Graph
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Modularity

Is there a ’dissection’ or ’modularity’ of the nonlinear network
behaviour? This must be a central idea of any complexity theory
based on networks, especially in systems biology (Savageau and
others).
Reaction schemes: consider the stationary states Nv = 0.
Transformation into reaction coordinates yields the following
expression for the Jacobian J:

J = N diag(v)κtdiag(h0)

with κ being the kinetic matrix and h0 = x−10 is the inverse of
stationary species concentrations.
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The intersection of the set of stationary reaction rates with the
kernel of N induces a convex polyhedric cone.

Kv = {v ∈ Rr |Nv = 0 , v ≥ 0} = (ker(N)) ∩ Rr
+

=
t∑

i=1

jiEi , ji > 0 ∀i}

The minimal number of generating vectors Ei are called extremal
currents (Clarke), in the bioinformatics literature also called
”elementary flux modes”. All equilibrium reactions can be written
in the form v(j) =

∑t
i=1 jiEi .
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Substitution of the extremal currents into the Jacobian yields

J̃(v) = N diag(
t∑

i=1

jiEi )κ
tdiag(h0).

With the implicit definition J(v) = J̃(j)diag(h0) the local
asymptotic stability of every equilibrium can be obtained by
summing up the stability properties of the different extremal
currents:

J̃(j)diag(h0) = j1J̃(E1)diag(h0) + . . .+ jt J̃(Et)diag(h0).

Extremal currents can be stable, unstable, or mixing stable (Clarke,
definition based on local Lyapunovfunctions). A stable and mixing
stable extremal current is called positive loop. Unstable or not
mixing stable extremal currents are called stoichiometric
generators. They lead to complex dynamical behaviour.
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Toric Variety (1)
In bifurcation theory, the behaviour of the system depends on the
parameters ki and ci . Applying bifurcation theory to stoichiometric
network analysis requires some additional restrictions on the
convex cone. Here every ray in the convex cone, i.e., [z1, ..., zr ]
with z ∈ ker(N) ∩ Rr

+, corresponds to some positive solution of

Nv(x0, k) = 0 (8)

for some values of k . To find such positive solution x , it is
sufficient to solve the system

z = v(x , k) = x0v(x , k)

where constant x0 is introduced because of the ambiguous length
of z . Then, the interior of the convex cone corresponds to all
positive solutions of (8) for any value of k .
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Toric Variety (2)

However, for fixed values of k and a given z > 0, a solution for the
system z = v(x , k) = x0v(x , k) is not guaranteed. In fact, z needs
to satisfy additional conditions that have been derived by Karin. A
positive solution exists if, and only if, z ∈ V (I deftor ) where V (I deftor ) is
an affine deformed toric variety of the deformed toric ideal,

I deftor = {f ∈ Q[z ]|f (v(x , k)) = 0} ⊆ Q(k)[z ].

Since each ray of the cone is parametrized by a different choice of
convex parameters j , there are also restrictions on j . A positive
solution will exist if j ∈ V (J) ∩ RM

+ where V (J) is a variety of the

new ideal J ⊆ Q(k)[j ] created by substituting z =
∑M

i=1 jiEi into
I deftor . For our purposes, the preferred basis of I deftor in all examples
will be a Gröbner basis with lexicographic ordering.
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Hopf Bifurcation

Assume that for a system

ẋ = f (x , k) x ∈ Rn, k ∈ R

there exists a smooth curve of equilibria (x(k), k) with x(k0) = k0.
This system has a simple Hopf bifurcation if the following
conditions on the coefficients of the characteristic polynomial of
the Jacobian Dx f (x0, k0) hold:

(CH1) a0(k0) > 0,H1(k0) > 0, . . . ,Hn−2(k0) > 0,Hn−1(k0) = 0;

(CH2) d
dk Hn−1(k0) 6= 0.
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Hopf Bifurcation
Let

ẋ = Nv(x , k) x ∈ Rn, k ∈ Rp
+

be a system consisting of M currents with corresponding convex
parameters j1, ..., jM . Let Hi denote the i × i Hurwitz determinants of the
characteristic polynomial

det(λI − Jac(j , h)) = λn + αn−1(j , h)λn−1 + · · ·+ α1(j , h)λ+ α0(j , h). (9)

For a set of (j , h) satisfying conditions:

(HB1) j ∈ V (J) ∩ RM
+ and h ∈

{
1/x : Nv(x , k) =

∑M
i=1 jiEi

}
∩ Rn

+

(HB2) α0(j , h) > 0, H1(j , h), ...,Hn−2(j , h) > 0, Hn−1(j , h) = 0; and

(HB3)
∑M

s=1
∂Hn−1

∂js

∂js
∂ki
6= 0 where ki is any one of the reaction constants

then there exists a constellation k ∈ Rp
+ at which the network undergoes

a simple Hopf bifurcation.
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We apply the conditions to a modified Selkov model of glycolytic
oscillations described by Eiswirth et al.. The model describes two
species interacting through five reactions, where S1 denotes the
product Fructokinase-1,6-biphosphate (F1,6BP) S2 denotes
adenosine triphosphate (ATP):

2S1 + S2
k1→ 3S1

∅
k2
�
k3

S1

∅
k4
�
k5

S2

Their dynamics take the form,

ẋ1 = k1x2
1x2 + k2 − k3x1

ẋ2 = −k1x2
1x2 + k4 − k5x2
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The stoichiometric matrix and vector of reaction rates are,

N =

[
1 1 −1 0 0
−1 0 0 1 −1

]
v(x ; k) =


k1x2

1x2
k2

k3x1
k4

k5x2


The model consists of three extreme currents:

E1 = (0, 1, 1, 0, 0) E2 = (0, 0, 0, 1, 1) and E3 = (1, 0, 1, 1, 0).

The first two extreme currents describe subnetworks of inflow and
outflow of F1,6BP and ATP, respectively. The third current
combines the autocatalytic formation of F1,6BP via ATP with
outflow of F1,6BP and inflow of ATP.
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Convex parameters j that lie in the variety of the toric ideal V (J)
must satisfy the equations,

k5k2
3 j3 − k1(j1 + j3)2j2 = 0

j1 − k2 = 0

j2 + j3 − k4 = 0

(10)

Via Hermite Normal Form we can calculate x1 = j1+j3
k3

, x2 = j2
k5

and,

h1 =
k3

j1 + j3

h2 =
k5
j2

(11)

The convex Jacobian is,

Jac(j) =

[
(j3 − j1)h1 j3h2

−2j3h1 −(j2 + j3)h2

]



Outline Deterministic Mass Action Kinetics Modularity Bifurcation Theory Extended Reaction Schemes

The characteristic polynomial is,

λ2+(h2j2+j3h2+h1j1−j3h1)λ+j23h2h1−j3h1h2j2+h1j1j3h2+h1h2j1j2

so, the Hurwitz determinants follow as,

a0 = j23h2h1 − j3h1h2j2 + h1j1j3h2 + h1h2j1j2

H1 = h2j2 + j3h2 + h1j1 − j3h1.

Condition (HB2) is satisfied if a0 > 0 and H1 = 0, namely,

2j3h2j2 + j23h2 − 2j3j2h1 + h2j22 > 0 . (12)

Since ∂H1
∂j1

= h1 and ∂H1
∂j2

= h2, (HB3) reduces checking that
∂H1
∂j3
6= 0, or equivalently,

h2 − h1 6= 0. (13)
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Bifurcation Diagramms

Equations (10) where each jt > 0 for t = 1, .., 3 and (11) - (13),
gives a set of conditions on (j , h) pair for which there exists a
parameter set k such that the system undergoes a simple Hopf
bifurcation. In the next figure we compare Hopf bifurcation
calculated via our method and a Hopf bifurcation calculated by
XPPaut. There is good agreement between the two curves of
bifurcations.
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Bifurcation Diagramms
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Two parameter bifurcation diagram of the glycolytic model for k3 = 10, k4 = 4, k5 = 0.5. k1 and k2 are

bifurcation parameters. HBxpp and HBgb denote Hopf bifurcations detected by XPPaut and our method,

respectively. XPPaut also detects a line of homoclinic bifurcations (HC).
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A Hierachy of Limits
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Extended Master Equation

Assuming some particles can have finitely many discrete states the
general time evolution of P is now given by a generalised master
equation (ME)

∂P(t,n)

∂t
= (L∗R + L∗E ) ◦ P(t,n) +

1

ε
KT (n) P(t,n), (14)

with ε > 0 a small parameter fixing the relative time scale on which
the Markov chain evolves. Also P, L∗R , L∗E and KT are sufficiently
regular such that (14) has a unique solution for all times t > 0.
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The Average Dynamics

Upon the assumption that the evolution of the MC is faster than the
deterministic dynamics, the macroscopic evolution of the combined
system is described by the average dynamics, which is given by

dxi (t)

dt
=

M∑
σ=1

µσ(x(t)) f
(σ)
i (x(t)),

xi (0) = xi,0.

(15)

Here µ is an invariant measure of K(x), and i = 1, ...,N. The invariant

measure µ can be a convex combination of invariant measures

compatible with the initial values {pi (0)}Mi=1, namely the support of µ in

Σ is equal to the support of p(0).
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We now define an extended reaction scheme for a genetic clock:

• A is the activator protein and MA its corresponding mRNA,

• R is the repressor protein and MR its corresponding mRNA,

• C is a complex formed by A and R.

Each gene can be either active or inactive, DA, DR denote the inactive
states, and D ′A, D ′R the active states. We now collect all necessary
reactions to model this situation:
Gene activation:

A + DA 
 [θA]γAD ′A,A + DR 
 [θR ]γRD ′R

Transcription:

DA →αA DA + MA, D ′A →α′A D ′A + MA

DR →αR DR + MR , D ′R →α′R D ′R + MR

Translation:
MA →βA A, MR →βR R
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Regulation and inhibition of protein A:

A + R →γC C , C →δA R

Degradation:

MA →δMA ∅, MR →δMR ∅,

A→δA ∅, R →δR ∅.

We next need to introduce the following concentrations for smaller
molecules in the system and their complexes:

a = [A], c = [C ], r = [R], mA = [MA], mR = [MR ].
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Figure: Combined interaction graph ~IC for the VKBL model.
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Average Dynamics
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Figure: The averaged interaction graph ~̄I for the VKBL model.
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ȧ(t) = −δA a(t)− γC a(t) r(t) + βA mA(t),

ċ(t) = −δA c(t) + γC a(t) r(t),

ṙ(t) = −δR r(t)− γC a(t) r(t) + βR mR(t) + δA c(t),

ṁA =
αAθA

θA + γAa (t)
+

α′AγAa (t)

θA + γAa (t)
− (δMA + βA) mA (t) ,

ṁR =
αRθR

θR + a (t) γR
+

α′Ra (t) γR
θR + a (t) γR

− (δMR + βR) mR (t) .

(16)
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The Average Dynamics

Upon the assumption that the evolution of the MC is faster than the
deterministic dynamics, the macroscopic evolution of the combined
system is described by the average dynamics, which is given by

dxi (t)

dt
=

M∑
σ=1

µσ(x(t)) f
(σ)
i (x(t)),

xi (0) = xi,0.

(17)

Here µ is an invariant measure of K(x), and i = 1, ...,N. The invariant

measure µ can be a convex combination of invariant measures

compatible with the initial values {pi (0)}Mi=1, namely the support of µ in

Σ is equal to the support of p(0).
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