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Abstract:

A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of elec-

trons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some
characteristics of the plasma focus device (PF) such as critical wave numbers a. and voltages U, in the
cases of various pressures P are estimated in order to satisfy the necessary conditions of traveling particle
densities (i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero
imaginary part of the growth rate &(o) for all cases. The model also predicts the minimal voltage ranges of

the system for certain pressure intervals.
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1. Introduction

A plasma focus (PF) device is one of the well-known de-
vices known as plasma guns, which consists of one anode
and several cathode bars surrounding it in a cylindrical
geometry [1, 2]. When the spark gap is activated, a capaci-
tor with a series connection to the PF provides a sufficient
electrical energy in order to initiate a breakdown between
the anode and cathode space under a suitable gas pres-
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sure. The dynamics of a PF consists mainly of three in-
dividual phases just after the electrical current starts to
pass through the spark gap. Among them the initial phase
is responsible for the breakdown and the first formation of
the current sheath just above the insulator on the central
electrode [2-4]. The second one is the acceleration phase
which pushes the sheath towards the open end of anode
by the Lorentz force [5]. The last phase of the discharge
is the collapse of the current sheaths in front of the anode
tip [2, 6] Yields such as neutrons, charged particles and
ions as well as intense radiation are emitted in this last
stage [1].

Previous studies have shown that pinch formulation and
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the corresponding plasma acceleration are strongly re-
lated to the initial stages of discharges [7-9]. An opti-
mal PF operation and maximal yield depend on previ-
ous plasma stages of a focus. Thus, perfect determina-
tion of the initial stages of the plasma dynamics is im-
portant for the estimation of optimal working conditions.
In this framework, the question “whether the pressure and
the critical breakdown voltage are in the optimal ranges”
comes to the forefront. At this point, the aim should be
the identification of plasma patterns as functions of the
aforementioned system parameters. The plasma stability,
namely, the linear stability analysis, which sketches out a
criterion on the formation of the potential and the islands
of electrons, ions and excited atoms between the elec-
trodes plays an important role. In addition, the plasma
may show some different characters due to stability con-
ditions. Frequently, a sudden onset, burst of energy, mo-
mentum and particles across magnetic surfaces and an
avalanche character are observed in different variations of
the system parameters.

In order to enhance the efficiency of the yields in PF
devices, a number of studies have been realized by fo-
cusing on the different physical properties of the devices;
for instance the insulator length, insulating material, and
distances between the electrodes [7, 8, 10]. In addition to
those researches, there also exist different mhd modeling
studies in the literature [4, 11-13]. However, the afore-
mentioned studies did not handle the linear stability anal-
ysis which describes the required system parameters for
the formation of plasma sheath inside the inter-electrode
area in terms of so-called Paschen curves. Another im-
portant motivation in this paper is as follows: PF exper-
iments have shown that there exist a certain mass loss
in the inter-electrode region during the axial phase. In a
typical experiment, at least 20 —40% of the initial mass of
the current sheath which is generated in the breakdown
phase is lost [14-16]. In other words, a certain number
of electrons and ions always escape from the spaces be-
tween the cathode rods while the plasma sheath moves. In
order to compensate the losses of ions and electrons, one
has to accept a continuous ionization process which covers
also the axial phase. Otherwise the system can not lead
to higher particle densities due to the insufficient num-
bers of electrons and ions. This reality forces us to use
the mechanism of breakdown in the axial phase. In other
words, ionization and diffusion mechanisms should also be
applied to the axial phase as in the breakdown phase [17].
The voltage drop in the breakdown phase, which generally
occurs for 100-500 nanoseconds in real focus experiments
is considered to be very low, so one can also use the ini-
tial voltage value U for the axial phase. In the light of
these preliminary initial ideas, a linear stability analysis

outer electrode

insulator

______., plasma pattern

e T—
s z

)

R0

:

inner electrode

*

%

imseiace
BLleosscoe]

Figure 1. Schematic representation of a plasma focus system.
Plasma pattern moves through the tip of electrodes in the
axial phase.

is carried out to construct the threshold in PF devices in
the axial phase. To our knowledge, there exists no suf-
ficient stability analysis in the literature for PF devices.
The analysis is realized via a computer simulation of the
plasma patterns at the acceleration phase in the coaxial
electrode system Fig. 1. In the model, we only use the ba-
sic concepts of conservation equations for electrons, ions
and excited atoms.

2. Theoretical description of prob-
lem

Initially, we assume a coaxial electrode system as in
Fig. 1. When the spark gap is short-cut, a current flows
through the electrodes from the capacitor bank, which has
a voltage U. After the breakdown phase which occurs
just above the insulator sleeve on the anode, the current
sheath moves into the inter-electrode space to the right of
the radial axis “r". The plasma dynamics basically in this
area is considered for the numerical simulation and the
lower and upper boundaries are assumed to be “r = ry”
and “r = ry" for the numerical process.

From a theoretical point of view, we consider the parti-
cle conservation equations for electrons, ions and excited
atoms. In this manner, the corresponding equations can
be written as follows:

N,
a@t + V- (Netit) = OF + Qg + D.V°N,,
N;
aat +V - (Na) = OF +Qr + DN, (1)
N,
aat =Q + Q; + D, V*N,.

Here, N indicates the number density of corresponding
particles, and & gives the drift velocity. D is the diffusion
coefficient and it is frequently considered as unity (i.e
D = 1) in this analysis since diffusion term is assumed
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to contribute the dynamics effectively. Moreover different
D values can easily be adopted to the model depending
on gas media. In the case of produced and lost particles
per unit volume, Q% and Q™ are used respectively. There
exist various forms for source terms in literature. Since
we consider the plasma pattern as a complex and nonlin-
ear structure, QT and Q~ can be determined as a/N and
—1/3BN3 (see in [18, 19]). Meanwhile we only deal with
the linear analysis in this study, we do not take into ac-
count the term Q~, which includes a higher order of N.
The subscripts e, i and a refer to electrons, ions and ex-
cited atoms respectively. The conservation equations (1)
are coupled with the Poisson equation,

v%:%ﬂM—ML ()

which gives the relation between the particle densities
and the electrical potential function.

According to the linear stability analysis, the task is first
to find out the threshold values which satisfy the following
expressions:

d o
C VY. 1) = LV, 1), 5
L=A+a(UP)B,

where the symbolic vector V(X,t) = (N) = (Ne, Ni, Ng)
represents the quantities in Equations (1-2). Moreover,
\7()?, t) = 0 corresponds to the ground state including
space and time dimensions. The operators C, £, A and
B are linear differential operators. We have the quantity
a(U, P) in Eq. (3) for the explicit form of the linear opera-
tor £ and it will be described later in detail. For now, we
only state that a is an empirical quantity which is a func-
tion of voltage U and filling gas pressure P. lonization
mostly occurs near the electrodes. In this sense, the par-
ticle densities can be taken as unity at the boundaries.
In the case of the electrical potential, a finite potential
exists at the boundaries due to the voltage difference be-
tween the electrodes. In the light of this information, the
following boundary conditions can be stated:

N=1 and =0 at

ar
¢p=¢o=U at and ¢=0 at

r=ry and r=r, (4

r=rnrop r=rnr.

The solution ansatz the for density functions and potential
can be given as,

V(% 1) = V(r,z,t) = V(r)elioz+oD
— \'/(r)ei(az+%(ﬂ)t)e?R(n)t' (5)

(l,)()?) — ¢(r'2) — &)(r)ei(az#\?(a)t)eik(a)r'

where V(r) is the general form for the functions
N.(r), Ni(r), Ny(r). The functions are solved numerically
through the fourth order Runge-Kutta shooting method
subject to the boundary conditions given in Eq. (4). From
the numerical point, effective computer routines are avail-
able in order to solve this eigenvalue problem (see in [20]).
In Eq. (5), the quantity “a” in the exponential expression is
nothing other than the wave number of the inter-electrode
plasma pattern along the “z" direction. The growth rate
is indicated by o in the time dimension. After putting the
ansatz (Eq. (5)) in Equations (1-2), a linear eigenvalue
problem is obtained as follows:

ola, a(U, P)]CViin(a,z) = {A + a(U, P) B} Via(a, 2),
(6)
where Vj;, indicates the linear vector fields. A detailed
form of the linear eigenvalue problem can be rewritten as

N, 100 N
-e 1 2 ~e
al N =07§+%-2 010 N;
N, roroor 001 N,
N
+ a Nl‘
Nq

/)

In the case of Poisson’s equation, Eq. (2) can be written
as follows by the boundary conditions in Eq. (4):

2
%§¢+§5—8)¢+%%(NF—M)=0.(&
The condition that the maximal real part of o vanishes (i.e.
Ro(a, a(U, P))] = 0), a neutral curve (i.e. linear stability
curve in order to satisfy the conditions for the generation
of a plasma pattern) is determined at U, The minimal
value of U with respect to a yields the critical wave num-
ber a.. Thus, the critical wave number a. satisfies the
critical voltage U, = Up(a.) for a given gas pressure. In
order to gain more information about the concept of linear
stability analysis, we refer to [20, 21].

In the literature, the empirical formula a(U, P) is fre-
quently used to identify the relation between the voltage
and pressure in the electrical discharge studies of various
plasma systems [22, 23]. The explicit form of the a control
parameter is a function of the voltage U and pressure P
variables,

BPd) , )

a(U,P)=AP exp (T

depending on the geometry of the model. In Eq. (1), the
source term Q% includes a(U, P) and defines a condition
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for the generation of particles as stated before. This for-
mula was empirically determined by Lozanckij et al. [24]
and used in some previous studies such as [17, 22, 23]
Here P is the PF pressure in units of Pascals (Pa) and
U is voltage in Volts. The radial distance between the
anode and cathode is indicated by d and it has a value
of d = 2.5 cm in our simulation. A and B are constants
for given conditions and a more detailed determination of
these empirical constants can be found in [25]. For this
study, we use the values A =1, B = 1000 and B = 3000
in our units. The drift velocity for electrons is given by
U, = p.V¢, however we do not take into account this
term since it is not a linear one. The electron mobility
Ue = €/mave, consists of electron charge, electron mass
and the electron-atom collision rate. In the physical frame,
we assume that electrons are emitted from the cathode by
the incidence of positive ions. The anode surface is as-
sumed to be perfectly absorbing.

From the physical point of view, when a large voltage
pulse between the electrodes is realized, this leads to ac-
celeration of electrons at the end of ionization process.
However it is important to obtain definite information on
the starting point of the scenario which triggers the above-
mentioned processes. It has been proven that it is possi-
ble to obtain analytical solutions of discharge breakdown
models in cylindrical geometry for very low current den-
sities [17]. In the case of higher voltages and currents,
ionization coefficients render nonlinear equations and nu-
merical procedures could be applied for a complete picture
of the system. Even without the nonlinear terms, a numer-
ical approach can give a more realistic description than
analytical studies. In this framework some limited aspects
of discharges were studied by [26] and it can not be gen-
eralized to a PF system. In addition, the authors assumed
a parallel plane scheme in their model.

3. Results and discussion

The simulations are carried out for the inter-electrode
area of a PF, which is sketched out in Fig. 1. The differ-
ence between the radius of the inner and outer electrodes
are assumed to be d = 0.025 m. We assume any gas with
varying pressures to determine the linear analysis for this
study. However a special gas type can easily be adopted
to the model depending on the material characteristics. In
our study, the maximum charging voltage is considered to
be U =16 kV and a wide range of voltages and pressure
values are investigated.

According to the simulations, the onset of breakdown is
found to be oscillatory for all cases. Note that the os-
cillatory case is defined by o (a., a(U., P))] # 0. This

=1

Figure 2. From top to bottom, contours of potential function, elec-
tron, ion and excited atom densities for diffusion coeffi-
cient D = 1, voltage U = 7.727 kV, wave number a = 4.0,
B = 1000 and P = 200 Pa (¥(0) = 0.013). The contour
values decrease from white to black color.

Figure 3. From top to bottom, contours of potential function, elec-
tron, ion and excited atom densities for diffusion coefficient
D = 10, voltage U = 5.285 kV, wave number a = 4.9,
B = 1000 and P = 20 Pa ($(¢) = 0.103). The contour
values decrease from black to white color.

kind of oscillatory result also supports the general view in
which the plasma sheath is not stationary; in fact moving
through the tip of the electrodes.

A series of two dimensional density and potential con-
tours on (r — z) plane are shown in Fig. 2. Note that
the potential lines of the ¢ function are in the order of
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kV. In the potential contour, there exist parallel constant
potential lines which have lower values toward the outer
electrode. A wavy appearance in the contours can be ac-
ceptable because of an oscillatory behavior of the plasma.
We refer to [27] for the detailed dynamics of these con-
tours in terms of tokamak plasma. For lower values of
o], island-type particle densities which are found in the
above reference can not be observed, however the particle
densities become island-type when $[g] > 0.1 is fulfilled
(see, for instance, Fig. 3). The contours of the electron
and ion densities are similar to each other, giving maxi-
mal values at r = 1/3 and r = 1. Contours of densities
are seen parallel to constant potential lines. The position
of maximal and minimal contour lines of N. and N; are
similar to each other. Whereas the positions of maximal
and minimal densities of N, are different from those of N,
and N; (i.e maximal density values of N, contour plot are
atr=0and r =2/3).

In the case of a relatively higher diffusion coefficient,
D =10, we show the same type of plot (Fig. 3). The par-
ticle densities with island-types are observable for this
parameter set. Note that the island-type densities and
potential contours can be clearly obtained for the pres-
sure and voltage values (P, U) which are higher then the
critical values (P, U;). In other words, the higher are the
(P — P, U—U,) values, the higher are the imaginary part
of the growth rates. It is easy to define the distance to
those critical values for a given parameter set by using a
linear analysis. One contribution of this study is to con-
struct the linear stability regions in terms of parameter
sets. For the case in Fig. 3, &(o) = 0.103 is obtained
for those parameters. Wavy potential lines and islands
are clearly seen in this figure. Note also that the density
contours of the particles also change dramatically since
the local higher and lower contours differ from the case
in Fig. 2. Asymmetry between electron and excited atom
densities are preserved as well.

Fig. 3 also gives interesting information on the spatial
distribution of particles in the sense that the densities in-
dicate maxima and repeat themselves along the z— axis
(i.e. anode). Such kind of behavior has also been obtained
in a recent numerical study of Yordanov et al. [4]. In their
Monte-Carlo simulations, they have found that the elec-
tron densities in the inter-electrode area of a PF give a
number of maxima along the inter-electrodic space in the
breakdown and post-breakdown (axial) phases.

The linear thresholds are shown in Fig. 4a. We find
two representative curves for two different B parameters,
namely B = 1000 (bottom) and B = 3000 (top). Note that
B is one of the constants under the given conditions and it
can be empirically determined for a PF. It is clear that the
threshold increases dramatically by increasing B as seen
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Figure 4. (a) The variation of the critical voltage U, as a function
of the PF pressure P (i.e stability curve) in the cases
B = 3000(top) and B = 1000(bottom). (b) The correspond-
ing critical wave number a, for the plasma pattern as a
function of pressure P in the cases of same B notation.
D =1 for both of the graphs.

in Fig. 4a. Another point is that the linear threshold curve
becomes narrow when B becomes higher. Strictly speak-
ing, the minimal points of these two curves correspond to
the pressure values of P = 200 Pa and P = 220 Pa for the
upper and lower curves, respectively. For a more detailed
picture, see Table 1.

The corresponding critical wave numbers (a.) as function
of PF pressures are represented in Fig. 4b. Trends of
these curves are similar to each other for different values
of B, however the wave numbers become higher when the
B parameter increases. For the lower pressures, a. starts
to increase up to a maximum value. At a moderate pressure
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Figure 5. (a) Variation of the wave number a as a function of initial
voltage U in the cases P = 50 Pa, 100 Pa and 200 Pa.
(b) Variation of the wave number a as a function of the PF
pressure P in the cases U = 0.75 kV, 1.5 kV and 2.5 kV.
Diffusion coefficientis D = 1.

of PF, it gives a maximal value, then it starts to decrease
for higher pressures as in Fig. 4b.

Apart from aforementioned critical values, we also look for
the variation of the pattern wave number a as a function of
initial voltage U. Such a graph is given in Fig. 5a for var-
tous values of gas pressure. It is clear from the graph that
there exists no solution below a certain voltage value for
each pressure rate. It is reasonable in the sense that the
formation of plasma in the inter-electrode space can not
be observed for every U voltage value. Furthermore when
the pressure of the system is increased, one needs higher
voltages in order to form a plasma pattern. Note also
that the relation of voltage and wave number indicates a
parabolic shape for increasing pressure (i.e. U o< a?).

In Fig. 5b, the variation of wave number as function of

Table 1. Some critical parameters for the formation of plasma pat-
tern. Diffusion coefficientis D = 1.

Pressure (Pa) B =1000 Pressure (Pa) B = 3000
Uec (V) ac Uc (k) ac
25 4.699 3.468 110 14.975 7.317
100 2.670 5.417 140 12.368 7.073
200 2.609 4.422 220 11.084 6.307
340 2.652  1.976 300 11.595 5.764
400 2.732  0.602 400 12.909 5.411

pressure is shown for various U values. The variation of
a is noteworthy since it determines a pressure range for
certain U initial voltages. In other words, a PF can work
under a certain range of pressure values. This pressure
range is, for instance, between 20 — 48 Pa for the voltage
of U = 0.75 kV. However, when the voltage increases,
the usable pressure range also gets larger as seen for
U = 2.5 kV. According to this result, it can be stated that
if one wishes to work at a large pressure interval, in this
case higher voltages should be applied to a PF.

4. Concluding remarks

The linear stability of a PF system is investigated theo-
retically in a 2-D framework. It is found that the linear
threshold for the plasma formation between the electrodes
of such a device is sensitive to initial parameters such as
the voltage, pressure and structural constants. The pat-
tern characteristics are considered by means of the wave
number which is found to be dependent on the pressure,
applied voltage and structural constants. Depending on
the structural constants, the threshold for critical voltage
changes from the order of U, = 2.5 kV to U. = 11 kV by
increasing B. In addition, the wave number of the pattern
determines certain pressure intervals for any given voltage
U. We suggest that our model can be applied to any PF
device in order to optimize them. Strictly speaking, one
should adjust the appropriate initial voltage depending on
the pressure intervals for experiments in order to observe
an accelerated plasma pattern.
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