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J.W. GIBBS

Elementary Principles in Statistical Mechanics - Developed with Especial
Reference to the Rational Foundation of Thermodynamics

C. Scribner’ s Sons, New York, 1902; Yale University Press, New Haven, (1981),
page 35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] to have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the
value of our results with respect to their bearing on thermodynamics.
It will exclude, for instance, cases in which the system or parts of it
can be distributed in unlimited space [...]. It also excludes many cases
in which the energy can decrease without limit, as when the system
contains material points which attract one another inversely as the
squares of their distances. [...]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly
involved in the formula (92).



Enrico FERMI Thermodynamics (Dover, 1936)

The entropy of a system composed of several parts is very
often equal to the sum of the entropies of all the parts. This
Is true If the energy of the system is the sum of the energies
of all the parts and If the work performed by the system
during a transformation is equal to the sum of the amounts
of work performed by all the parts. Notice that these
conditions are not quite obvious and that in some cases
they may not be fulfilled. Thus, for example, in the case of a
system composed of two homogeneous substances, it will
be possible to express the energy as the sum of the
energies of the two substances only if we can neglect the
surface energy of the two substances where they are in
contact. The surface energy can generally be neglected
only if the two substances are not very finely subdivided,
otherwise, it can play a considerable role.
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DEFINITIONS : g —logarithm : In x=

—q
1
q — exponential : e, =[l+(I-g)x|a (¢ =e")
Hence, the entropies can be rewritten :
equal probabilities | generic probabilities
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TYPICAL SIMPLE SYSTEMS: N
Short-range space-time correlations e'g" W(N) o lu (lu > 1)

Markovian processes (short memory), Additive noise

Strong chaos (positive maximal Lyapunov exponent), Ergodic, Riemannian geometry
Short-range many-body interactions, weakly quantum-entangled subsystems
Linear/homogeneous Fokker-Planck equations, Gausssians

- Boltzmann-Gibbs entropy (additive)

-> Exponential dependences (Boltzmann-Gibbs weight, ...)

TYPICAL COMPLEX SYSTEMS: [ o J§/(N) o N” (p > 0)

Long-range space-time correlations

Non-Markovian processes (long memory), Additive and multiplicative noises
Weak chaos (zero maximal Lyapunov exponent), Nonergodic, Multifractal geometry
Long-range many-body interactions, strongly quantum-entangled sybsystems
Nonlinear/inhomogeneous Fokker-Planck equations, g-Gaussians

- Entropy Sq (nonadditive)

- g-exponential dependences (asymptotic power-laws)



ADDITIVITY: O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment
(Pergamon, Oxford, 1970), page 167

An entropy 1s additive 1f, for any two probabilistically independent
systems A and B,

S(A+B)=8(4)+S5(B)
Therefore, since

S (A+B)=S_(A)+S (B)+(1-¢q) S (A4) S, (B),
S, and S fe”y '(Vq) are additive, and S , (Vg #1) is nonadditive .

EXTENSIVITY:

Consider a system 2 = 4, + 4, +...+ 4,, made of N (not necessarily independent)
identical elements or subsystems 4, and 4,, ..., 4.
An entropy 1s extensive 1f

0< lImm S(NV)
N —oo N

<oo, e, S(N)ec N (N — o)



PHYSICAL REVIEW E 78, 021102 (2008)

Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

Filippo Caruso' and Constantino Tsallis>
'NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
2Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
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(Received 16 March 2008; revised manuscript received 16 May 2008: published 5 August 2008)

The Boltzmann—Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L%, Here we show, for d=1,2, that the (nonadditive) entropy S, satisfies, for a special value of g # 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., SqOCL" . Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,
Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked
by a maximum of the special entropic index gq.



SPIN %2 XY FERROMAGNET WITH TRANSVERSE MAGNETIC FIELD:

N-—
M= [(1+7)67070 + (1=2)d]67, 1 +2)57]

=1
7 =1 — Ising ferromagnet

O0< |y| <1 — anisotropic XY ferromagnet
Y =0 — isotropic XY ferromagnet

A = transverse magnetic field

L = length of a block within a N — o chain

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)



p, = ground state (7' =0) of the N-system
(assuming A = +0)

= py=py=Trp; =1

— P, 1S a pure state

=S5, (N)=0 (Vq, VN)

In contrast, p, =Tr,_, p, satisfies Trp; <1

= p, 1s a mixed state
=S, (N,L)>0
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Using a Quantum Field Theory result
in P. Calabrese and J. Cardy, JSTAT P06002 (2004)

we obtain, at the critical transverse magnetic field,

V9+c® -3

C

qent —

with ¢ = central charge in conformal field theory

Hence
: . . 1
Ising and anisotropic XY ferromagnets = c = > = q,, = J37-6 =0.0828
and
Isotropic XY ferromagnet = ¢=1 = ¢, = J10-3 =0.1623

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)



(d=1; T=0)

(pure magnet with critical transverse field)
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A Saguia and MS Sarandy, Phys Lett A 374, 3384 (2010)



SYSTEMS ENTROPY Ssc |ENTROPY Sq (g<1)

(additive) (nonadditive)

Short-range

interactions, EXTENSIVE NONEXTENSIVE

weakly entangled

blocks, etc

Long-range

interactions (QSS), | NONEXTENSIVE EXTENSIVE

strongly entangled

blocks, eth

quarks-gluons, plasma, curved space ...?




When entropy does not seem extensive
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Black holes and thermodynamics*

S. W. Hawking f
California Institute of Technology, Pasadena, California 91125
and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England
(Received 30 June 1975)

A black hole of given mass, angular momentum, and chargé can have a large number of different
unobservable internal configurations which reflect the possible different initial configurations of the matter
which collapsed to produce the hole. The logarithm of this number can be regarded as the entropy of the
black hole and is a measure of the amount of information about the initial state which was lost in the
formation of the black hole. If one makes the hypothesis that the entropy is finite, one can deduce that the
black holes must emit thermal radiation at some nonzero temperature. Conversely, the recently derived
quantum-mechanical result that black holes do emit thermal radiation at temperature xh/2m kc, where k is
the surface gravity, enables one to prove that the entropy is finite and is equal to ¢ ’4/4 Gh, where A is the
surface area of the event horizon or boundary of the black hole. Because black holes have negative specific
heat, they cannot be in stable thermal equilibrium except when the additional energy available is less than 1/4
the mass of the black hole. This means that the standard statistical-mechanical canonical ensemble cannot be
applied when gravitatiohal interactions are important. Black holes behave in a completely random and time-
symmetric way and are indistinguishable, for an external observer, from white holes. The irreversibility that
appears in the classical limit is merely a statistical effect.




ENTROPIES

Se = kBZpl. In— — additive
i=1 pi
d 1
S, = kB;pi lnq ; (S,=8,,) — nonadditive if g#1  C.T.(1988)

5
w
S5 = kBZpi[lni] (S, =S,.) — nonadditive if 6 #1  C.T.(2009)

o
v 1
S, 5= kBZ pi(lnq —) (S, =8:8;5=558,=5,,

— nonadditive if (¢,0) # (1,1)
C.T. and L.J.L. Cirto (2011)
1202.2154 [cond-mat.stat-mech]



EXTENSIVITY OF THE ENTROPY (N — o)

IfFW(N)~p" (u>1)
= S, (N)=k,InW(N) o N

IfW(N)~N" (p>0)
= S,(N) =k,In W(N) <[V (N)]" e N?"0

= S (N) <N

g=1-1/p

IEW(N)~vY (v>1 0<y<l)
= S,(N)=k,[InW(N)] e N7°
= S5y (N) = N



Hawking, string theory, etc, yield
Specttl(NY=k,InW(N)oc L’ o< N (N o< L)

More generally, we have
d—1

S.o(N)=k,InW(N)o< L' < N (d>1)

hence
T In ®(N
W(N) e dN) V' | with lim, 2PN _ g
N7
d

hence the entropy which is extensive is S; with 6=——

W(N) 1 )é-!
ie. Ss(NY=k, > p,| In— (d>1)
i=l1 ‘

1

W (N) 1 )2
Consequently nggfzhOZe(N )=k, 2 D, (ln—] o« Noc ' 1N
i=1 1%



SYSTEMS| ENTROPY S,.| ENTROPY S, ENTROPY S,
W(N) (g#1) (0#1)
—~ ‘LLN
EXTENSIVE | NONEXTENSIVE | NONEXTENSIVE
(u>1)
~ NP
NONEXTENSIVE | EXTENSIVE | NONEXTENSIVE
(p>0)
—~ VN 4
(v>1; NONEXTENSIVE | NONEXTENSIVE | EXTENSIVE
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D. Prato and C. T., Phys Rev E 60, 2398 (1999)
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CENTRAL LIMIT THEOREM

N _scaled attractor F(x) when summing N — oo q -independent identical random variables

with symmetric distribution f (X) with o, = de X[ f(x)]° /de [£(X)]° (Q 2g-1,q, = ;+q }

qg=1 [independent] gzl (e, O=2q-1 #1) [globally correlated ]
F(x)=G,(x) =G, (1+a1) (x) with same o, of f(x)
o < F(x) = Gaussian G(x), G(x) if | x<<x,(q,2)
0 with same oy of f(x) q( ) - f(x)~C, /|x|2/(q—1) if | x> x.(¢,2)
(a=2)

Classic CLT with lim__,, x.(q,2) =e°

S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)

F(x) = Levy distribution L,(x) F(x)=L,, ., with same |x|— e asymptotic behavior
with same |x| — oo behavior . 2(1—2‘1()1—_0;()3—61)
G2(1—Q)—a(1+q) a(x) - Cq,a/ [ x
: 2(1-q)~e(3-q)
Op = G(x) (intermediate regime)
O<a<d)y ) Thksxta| 1 .
e ~c, a1t G (x)— CF /| x [(He/(Hrag—e)
. 20qg—o+3 2 q,x
if |xp>x.(L,o) o+l
with lim,,_ , x, (l,0) = oo (distant regime)

Levy-Gnedenko CLT ‘
cvy-nedenko S. Umarov, C. T., M. Gell-Mann and S. Steinberg

J Math Phys 51. 033502 (2010)
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Group entropies, correlation laws, and zeta functions

Piergiulio Tempesta
Departamento de Fisica Teorica Il, Facultad de Fisicas, Ciudad Universitaria, Universidad Complutense, E-28040 Madrid, Spain
(Received 15 February 201 1: revised manuscript received 3 May 201 1; published xxxxx)

The notion of group entropy is proposed. It enables the unification and generaliztion of many different
definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis.
Other entropic functionals are presented, related to nontrivial correlation laws characterizing universality classes
of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed.
The mathematical structure underlying our construction is that of formal group theory, which provides the
general structure of the correlations among particles and dictates the associated entropic functionals. As an
example of application, the role of group entropies in information theory is illustrated and generalizations of the
Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions
is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.
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LOGISTIC MAP AT THE EDGE OF CHAOQOS:

——— a=1.40209
10| 4=1.401354
a=1.401198
——— a=1.4011644
107 | ——— 4=1.40115716
G === Eq.(4);¢=1.63; =6.2
S |
R 107}
—— F )
—c N=2 n
S 109 ;
: =1.40115716 1 —
1, =10° =P g=1.63
i P / B=6.2
e a=1.40209 Sl
. >” \s;
15 -10 -5 0 5 10 15

y P(0)

U. Tirnakli, C. T. and C. Beck, Phys Rev E 79 (2009) 056209



CONSERVATIVE MC MILLAN MAP:

’xn+l — yn

Vn |
2I

EY,
Ty,

yn+l :_xn+2ﬂl

U # 0 & nonlinear dynamics

G. Ruiz, T. Bountis and C. T.
Int J Bifurcat Chaos (2012), in press



(4, €)

=(1.6,1.2)

Krermearre N N=213 N2
(N =2%) (N =2")

FI1G. 10.  Structure of phase space plot of Me. Millan perturbed map for parameter values o = 1.6
and ¢ = 1.2, starting form a randomly chosen initial condition in a square (0,107%) x (0, 1079),

and fori=1...N (N =210 213 N16 N18) jterates.

G. Ruiz, T. Bountis and C. T.
Int J Bifurcat Chaos (2012), in press
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0,1 =2",Ci= '
. N=2"%Ci=10° ' 1E-3 —— (g=1.6)-Gaussian
. . —(g=1.6)-Gaussian (p=4.5)
£ 0,014 : (p=4.5) 8
-~ (o
[+
1E-3+
:' ',:‘0 *
P. .‘
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with (g, B8) = (1.6,4.5)

G. Ruiz, T. Bountis and C. T.
Int J Bifurcat Chaos (2012), in press



CORRELATIONS IN COUPLED LOGISTIC MAPS AT THE
EDGE OF CHAOS IN THE PRESENCE OF GLOBAL NOISE

We consider a linear chain of N coupled maps
with periodic boundary conditions in a noisy
environment:

] j € — i+
X =A=8)f () + LA (x, D+ f(xD+o, |o,el0o,,]
additive
with €e€[0,1] coupling strength noise

and fOxH=1-u(x')" wel0,2] ithlogistic map (i=1..N)

[zero noise: N.B. Ouchi and K. Kaneko, Chaos 10, 359 (2000)]

Intermittency in the normalized
edge of chaos: U = 14011551 returns time-series
global parameter & N=100 — £¢=0.8 — 0=0.002
_ N i i
dy = il |zi— < x} > | Ad

stdev

time returns
Ad,= d,,. —d

1+7 t

=7.7
500 6380

1 t
A. Pluchino, A. Rapisarda and C. T. (2012), 1206.2152 [cond-mat stat-mech]



N=100; €=0.8; o =0002; 7=32

Chaotic Regime: 1, = 2.0 Edge of chaos: 1, = 1.4011551

[ ] [ ! I o [ ! T T T T T T T
10° :_Couplcc{ Mapfs: N=100. mu=2.0, Sigma=0.200, DT=32 o 10 L Coupled Maps: N=100, Sigma=0.002, DT=32 .
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Abstract. We consider a m-mode solution of the Fermi-Pasta—Ulam 3 system.
By perturbing it, we study the system as a function of the energy density from a
regime where the solution is stable to a regime where it is unstable, first weakly
and then strongly chaotic. We introduce, as an indicator of stochasticity, the
ratio p (when it is defined) between the second and the first moment of a given
probability distribution. We will show numerically that the transition between
weak and strong chaos can be interpreted as the symmetry breaking of a set
of suitable dynamical variables. Moreover, we show that in the region of weak
chaos there is numerical evidence that the thermostatistic is governed by the
Tsallis distribution.
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Figure 5. Plot on a linear-log scale of the numerical distribution f(¢) (blue
points) fitted with a Tsallis distribution (red) and a Gauss distribution (green)
for N = 128, € = 1 and 5. In both cases the Tsallis and Gaussian distributions
essentially overlap.

M. Leo, R.A. Leo and P. Tempesta, J Stat Mech P04021 (2010)
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Non-Maxwellian behavior and quasistationary regimes near the modal solutions of the
Fermi-Pasta-Ulam S system

M. Leo” and R. A. Leof

Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Universita del Salento, Via per Arnesano, 73100 Lecce, Italy

P. Tempesta*
Departamento de Fisica Teorica Il, Facultad de Fisicas, Ciudad Universitaria, Universidad Complutense, 28040 Madrid, Spain

C. Tsallis®
Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150,
22290-180 Rio de Janeiro, Rio de Janeiro, Brazil and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
(Received 9 September 2011; published 30 March 2012)

In a recent paper [M. Leo, R. A. Leo, and P. Tempesta, J. Stat. Mech. (2011) PO3003], it has been shown that
the 7 /2-mode exact nonlinear solution of the Fermi-Pasta-Ulam g system, with periodic boundary conditions,
admits two energy density thresholds. For values of the energy density € below or above these thresholds, the
solution is stable. Between them, the behavior of the solution is unstable, first recurrent and then chaotic. In this
paper, we study the chaotic behavior between the two thresholds from a statistical point of view, by analyzing the
distribution function of a dynamical variable that is zero when the solution is stable and fluctuates around zero
when it is unstable. For mesoscopic systems clear numerical evidence emerges that near the second threshold, in
a large range of the energy density, the numerical distribution is fitted accurately with a g-Gaussian distribution
for very large integration times, suggesting the existence of a quasistationary state possessing a weakly chaotic
behavior. A normal distribution is recovered in the thermodynamic limit.

1 N , 1 N , ﬁ N )
H = E;p, +§§(xi+l —xi) + Z;(XHJ _xi)

with xy .1 = x; and B = 0. All quantities are dimensionless.
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FIG. 7. (Color online) log-linear representation of the three
distributions for N = 256 and € = 0.1477: Gaussian and g-Gaussian

distributions overlap with the numerical one (red crosses). We get

X; =242x 1077 and x;, =221 x 107",
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FIG. 9. (Color online) g vs the number of integration steps N,
€ = 0.095, N = 16 (red solid curve), N = 32 (blue ), and N =
(purple pluses). The integration time is ¢ = 0.02Nys. The asymp
values of g are respectively g4 = 0.9255 £+ 0.0003, g3, = 0.96¢
0.0004, gg; = 0.9871 £ 0.0004.
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COLD ATOMS IN DISSIPATIVE OPTICAL LATTICES:

RAPID COMM

PHYSICAL REVIEW A 67, 051402(R) (2003)

Anomalous diffusion and Tsallis statistics in an optical lattice

Eric Lutz
Sloane Physics Laboratory, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
(Received 26 February 2003: published 27 May 2003)

We point out a connection between anomalous transport in an optical lattice and Tsallis® generalized statis-
tics. Specifically. we show that the momentum equation for the semiclassical Wigner function which describes
atomic motion in the optical potential, belongs to a class of transport equations recently studied by Borland
[Phys. Lett. A 245, 67 (1998)]. The important property of these ordinary linear Fokker-Planck equations is that
their stationary solutions are exactly given by Tsallis distributions. An analytical expression of the Tsallis index

¢ in terms of the microscopic parameters of the quantum-optical problem is given and the spatial coherence of
the atomic wave packets is discussed.

(i) The distribution of atomic velocities is a g-Gaussian;

(i) g=1+ 4?]& where E, =recoil energy
0

U, = potential depth
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Tunable Tsallis Distributions in Dissipative Optical Lattices

P. Douglas, S. Bergamini, and F. Renzoni

Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom
(Received 10 January 2006: published 24 March 2006)

We demonstrated experimentally that the momentum distribution of cold atoms in dissipative optical
lattices is a Tsallis distribution. The parameters of the distribution can be continuously varied by changing
the parameters of the optical potential. In particular, by changing the depth of the optical lattice, it is
possible to change the momentum distribution from Gaussian, at deep potentials, to a power-law tail
distribution at shallow optical potentials.




Experimental and computational verifications
by P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601 (2006)

0'12 = 1] ] 1 3 1 1] 1
(a)
0.10 |
0.08 (R* =0.995)
a
S 006
0.04
0.02 |
0.0 : L '
-40 -30 -20 -10 0 10 20 30 40
P/py
2.0 —
*
18 + \e
1.6 e g=1+ ME,
o
14 ".,/* U,
12 - - L ]
(b)
30 50 70 90 110130150 170190210230
U, /E,

(Computational verification:
quantum Monte Carlo simulations)

r e (a)
08 - / \ 2
/\ (R*=0.9985)
3 06 + /
= 04 / \
T \
02 o / \\
0 fmmsn e
-40 -30 -20 <10 O 10 20 30 40
PP,
16} | (b)
b
T 13 ?i. .
10 ¢ L L
20 22 24 26 28 30
,/(2n) (kHz)
(@ b q=1.3840.12 (b)

W(p)

0 10 20 30 40
PP,

(Experimental verification: Cs atoms)

P.(p)

A TN WA NN T N NN N N AN

20 30 40
PP




PRL 100, 055003 (2008) PHYSICAL REVIEW LETTERS 8 FEBRUARY 2008

Superdiffusion and Non-Gaussian Statistics in a Driven-Dissipative 2D Dusty Plasma

Bin Liu and J. Goree

Department of Physics and Astronomy, The University of lowa, lowa City, lowa 52242, USA
(Received 1 June 2007; published 6 February 2008)

Anomalous diffusion and non-Gaussian statistics are detected experimentally in a two-dimensional
driven-dissipative system. A single-layer dusty plasma suspension with a Yukawa interaction and fric-
tional dissipation is heated with laser radiation pressure to yield a structure with liquid ordering.
Analyzing the time series for mean-square displacement, superdiffusion is detected at a low but
statistically significant level over a wide range of temperatures. The probability distribution function
fits a Tsallis distribution, yielding ¢, a measure of nonextensivity for non-Gaussian statistics.
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PRL 102, 063001 (2009) PHYSICAL REVIEW LETTERS 13 FEBRUARY 2009

Power-Law Distributions for a Trapped Ion Interacting with a Classical Buffer Gas

Ralph G. DeVoe

Physics Department, Stanford University, Stanford, California 94305, USA
(Received 3 November 2008; published 10 February 2009)

Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in
a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of
buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from
cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters
and have ab initio agreement with experiment.
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FIG. 1 (color online). Monte Carlo distributions for a single
136Ba* ion cooled by six different buffer gases at 300 K ranging
from mg = 4 (left) to mg = 200 (right). Note the evolution from
Gaussian to power law (straight line) as the mass increases. The
solid lines are Tsallis functions [Eq. (7)] with fixed o =
0.0185 ¢m and the exponents of Table I. TABLE I. Tsallis parameters n and g7 fit from Fig. 1.
Buffer gas my/mg n qr
He 34.5 =60 1.03
Ar 3.40 8.2 1.12
Kr 1.70 3.8 1.26
Xe 1.0 1.98 1.51
170 0.80 1.50 1.80

200 0.68 1.15 1.87




Prediction of the g - triplet: cC. T., Physica A 340,1 (2004)

SENSITIVITY
(qsen)

RELAXATION STATIONARY STATE
(C] re/) (qsfm‘)

Fig. 2. The triangle of the basic values of g, namely those associated with sensitivity to the initial conditions,
relaxation and stationary state. For the most relevant situations we expect gsen < 1, Gro; = 1 and gsiar = 1.
These indices are presumably inter-related since they all descend from the particular dynamical exploration
that the system does of its full phase space. For example, for long-range Hamiltonian systems characterized
by the decay exponent o and the dimension d, it could be that gy, decreases from a value above unity
(e.g., 2 or %) to unity when o/d increases from zero to unity. For such systems one expects relations like
the (particularly simple) ¢siar = Gre1 = 2 — @sen Or similar ones. In any case, it is clear that, for o/d > 1
(i.e., when BG statistics is known to be the correct one), one has gswr = g1 = gsen = 1. All the weakly
chaotic systems focused on here are expected to have well defined values for gsen and g,.;, but only those
associated with a Hamiltonian are expected to also have a well defined value for gsar.
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Triangle for the entropic index ¢ of non-extensive
statistical mechanics observed by Voyager 1
in the distant heliosphere

L.FF. Burlaga™, A.F. -Vifas
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SOLAR WIND: Magnetic Field Strength

L.F. Burlaga and A. F.-Vinas (2005) / NASA Goddard Space Flight Center; Physica A 356, 375 (2005)
[Data: Voyager 1 spacecraft (1989 and 2002); 40 and 85 AU; daily averages]
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The atmosphere of the Sun beyond a few solar radii, known as HELIOSPHERE, is fully
ionized plasma expanding at supersonic speeds, carrying solar magnetic fields with it.
This solar wind is a driven non-linear non-equilibrium system. The Sun injects matter,
momentum, energy, and magnetic fields into the heliosphere in a highly variable way.
Voyager 1 observed magnetic field strength variations in the solar wind near 40 AU
during 1989 and near 85 AU during 2002. Tsallis’ non-extensive statistical mechanics,
a generalization of Boltzmann-Gibbs statistical mechanics, allows a physical
explanation of these magnetic field strength variations in terms of departure from
thermodynamic equilibrium in an unique way:

SOLAR WIND: Magnetic Field Strength

F. Burlaga and A. F.-Vinas (2005) / NASA Goddard Space Flight Center
[Data: Voyager 1 spacecraft (1989 and 2002); 40 and 85 AU ]
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A novel automatic microcalcification detection technique using Tsallis

entropy & a type Il fuzzy index

Mohanalin*, Beenamol, Prem Kumar Kalra, Nirmal Kumar
Department of Electrical Engineering, IIT Kanpur, UP-208016, India

ARTICLE INFO

ABSTRACT

Article history:

Received 18 August 2009

Received in revised form 12 August 2010
Accepted 12 August 2010

This article investigates a novel automatic microcalcification detection method using a
type Il fuzzy index. The thresholding is performed using the Tsallis entropy characterized
by another parameter ‘q', which depends on the non-extensiveness of a mammogram,
In previous studies, ‘q"' was calculated using the histogram distribution, which can lead

Keywords:

Tsallis entropy
Type Il fuzzy index
Shannon entropy
Mammograms
Microcalcification

to erroneous results when pectoral muscles are included. In this study, we have used
a type Il fuzzy index to find the optimal value of ‘q". The proposed approach has been
tested on several mammograms. The results suggest that the proposed Tsallis entropy
approach outperforms the two-dimensional non-fuzzy approach and the conventional
Shannon entropy partition approach. Moreover, our thresholding technique is completely
automatic, unlike the methods of previous related works. Without Tsallis entropy
enhancement, detection of microcalcifications is meager: 80.21% Tps (true positives) with
8.1 Fps (false positives), whereas upon introduction of the Tsallis entropy, the results surge
to 96.55% Tps with 0.4 Fps.
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Weili SHI, Yanfang LI, Yu MIAQO, Yinlong HU
Changchun University of Science and Technology

Research on the Key Technology of Image Guided Surgery

Abstract. It research on the key technology on IGS (image-guided surgery). It proposes medical image segmentation based on PCNN and the

virtual endoscopic scenes real-time rendering method based on GPU parallel computing technology, which improves the display quality of IGS's
virtual scene and real-time rendenng speed. These methods are very important for IGS's applications.

Fig.12. Bronchus Fig.13.Colon Fig.14.blood vessel

Table 1. Speed Comparison between Traditional Algorithms and
Present Algorithm(uint: fps)

CT Image Bronchus Colon blood vessel

Image Extent | 512°51*217 | 512*512*252 | 512°512*355
Ray casting 9.8 6.4 3.5
Our algorithm 36.2 35.7 321
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Tissue Radiation Response with Maximum Tsallis Entropy

O. Sotolongo-Grau™ and D. Rodriguez-Pérez
UNED, Departamento de Fisica Matemdtica y de Fluidos, 28040 Madrid, Spain

J.C. Antoranz

UNED, Departamento de Fisica Matemdtica y de Fluidos, 28040 Madrid, Spain,
and University of Havana, Catedra de Sistemas Complejos Henri Poincaré, Havana 10400, Cuba

Oscar Sotolongo-Costa

University of Havana, Cdtedra de Sistemas Complejos Henri Poincaré, Havana 10400, Cuba
(Received 22 June 2010; published 7 October 2010)

The expression of survival factors for radiation damaged cells is currently based on probabilistic
assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the
simplest of these radiobiological models can be derived from the maximum entropy principle of the
classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff
hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement
with the experimental data found in the literature.
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Strain-profile determination in ion-implanted single

pyuie’ul crystals using generalized simulated annealing

Crystallography
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Sud 11, Batiment 108, 91405 Orsay Cedex, France. Correspondence e-mail:

alexandre.boulle@unilim.fr

A novel least-squares fitting procedure is presented that allows the retrieval of
strain profiles in ion-implanted single crystals using high-resolution X-ray
diffraction. The model is based on the dynamical theory of diffraction, including
a B-spline-based description of the lattice strain. The fitting procedure relies on
the generalized simulated annealing algorithm which, contrarily to most
common least-squares fitting-based methods, allows the global minimum of
the error function (the difference between the experimental and the calculated
curves) to be found extremely quickly. It is shown that convergence can be
achieved in a few hundred Monte Carlo steps, i.e. a few seconds. The method is
model-independent and allows determination of the strain profile even without
any ‘guess’ regarding its shape. This procedure is applied to the determination of
strain profiles in Cs-implanted vttria-stabilized zirconia (YSZ). The strain and
damage profiles of YSZ single crystals implanted at different ion fluences are
analyzed and discussed.




(b)

1 -
- ‘é
.Q =
= g CSA
G~ Qa
8 0.1- .g‘ \
LE ] § v \
K=
GSA /iGSA
0.01 -
1 1010°10°10°10° 73.0 73.5
t (MCS) 20 (deg.)
(o) (d)
0.6 :
0.5-
S 044
§ 0377
7 1.
027 oga |
0.1
0.0 S 0.0

0 50 100 150 200 0 50 100 150 200
Depth (nm) Depth (nm)



Physics Reports 515 (2012) 115-226

Contents lists available at SciVerse ScienceDirect FRYBICH RERORTS

Physics Reports

FI SEVIER journal homepage: www.elsevier.com/locate/physrep

Physical approach to complex systems

Jarostaw Kwapieri®*, Stanistaw Drozdz®

* Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakéw, Poland
Y Institute of Computer Science, Facuity of Physics, Mathematics and Computer Science, Cracow University of Technology, PL-31-155 Krakéw, Poland

Typically, complex systems are natural or social systems which consist of a large number
of nonlinearly interacting elements. These systems are open, they interchange information
or mass with environment and constantly modify their internal structure and patterns
of activity in the process of self-organization. As a result, they are flexible and easily
adapt to variable external conditions. However, the most striking property of such systems
is the existence of emergent phenomena which cannot be simply derived or predicted
solely from the knowledge of the systems' structure and the interactions among their
individual elements. This property points to the holistic approaches which require giving
parallel descriptions of the same system on different levels of its organization. There is
strong evidence - consolidated also in the present review - that different, even apparently
disparate complex systems can have astonishingly similar characteristics both in their
structure and in their behaviour. One can thus expect the existence of some common,
universal laws that govern their properties.

Physics methodology proves helpful in addressing many of the related issues. In
this review, we advocate some of the computational methods which in our opinion
are especially fruitful in extracting information on selected - but at the same time
most representative - complex systems like human brain, financial markets and natural
language, from the time series representing the observables associated with these
systems. The properties we focus on comprise the collective effects and their coexistence
with noise, long-range interactions, the interplay between determinism and flexibility
in evolution, scale invariance, criticality, multifractality and hierarchical structure. The
methods described either originate from “hard” physics - like the random matrix theory
- and then were transmitted to other fields of science via the field of complex systems
research, or they originated elsewhere but turned out to be very useful also in physics —
like, for example, fractal geometry. Further methods discussed borrow from the formalism
of complex networks, from the theory of critical phenomena and from nonextensive
statistical mechanics. Each of these methods is helpful in analyses of specific aspects of
complexity and all of them are mutually complementary.
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KURAMOTO MODEL: (N nonlinearly coupled oscillators)

(N=20000; K=2.53)
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Thermostatistics of Overdamped Motion of Interacting Particles

J.S. Andrade, Jr.."* G.F. T. da Silva.," A. A. Moreira,' F.D. Nobre.>® and E. M. F. Curado®?
]a{)(qmrmnmnm de Fisica, Universidade Federal do Ceara, 60451-970 Fortaleza, Ceara, Brazil
2Centro Brasileiro de Pesquisas Frisicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil

3National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil
(Received 8 August 2010; published 22 December 2010)

We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simula-
tions, that the overdamped motion of interacting particles at 7= 0, where T is the temperature of a
thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For
sufficiently high values of T, the distribution of particles becomes Gaussian, so that the classical
Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system
displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a
linear combination of Tsallis and Boltzmann-Gibbs entropies.
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Influence of the interaction range on the thermostatistics of a classical many-body
system

Leonardo J.L. Cirto!, Vladimir R.V. Assis?, and Constantino Tsallis'*
! Centro Brasileiro de Pesquisas Fisicas and
National Institute of Science and Technology for Complex Systems,
Rua Xawier Sigaud 150,
22290-180 Rio de Janeiro-RJ, Brazl
2 Departamento de Fisica,
Universidade FEstadual de Feira de Santana,
44031-460 Feira de Santana-BA, Brazil
“Santa Fe Institute, 1399 Hyde Park Road,
Santa Fe, NM 87501, USA

We numerically study a one-dimensional system of N classical localized planar rotators coupled
through interactions which decay with distance as 1/r® (e > 0). The approach is a first principle one
(i.e., based on Newton’s law) which, through molecular dynamics, yields the probability distribution
of angular momenta. For o large enough we observe, for longstanding states corresponding to
N > 1 systems, the expected Maxwellian distribution. But, for « small or comparable to unity,
we observe instead robust fat-tailed distributions that are quite well fitted with ¢g-Gaussians. These
distributions extremize, under appropriate simple constraints, the nonadditive entropy S, upon
which nonextensive statistical mechanics is based. The whole scenario appears to be consistent
with nonergodicity and with the g-generalized Central Limit Theorem. It confirms the more-than-
centennial prediction by J.W. Gibbs that standard statistical mechanics are not applicable for long-
range interactions (i.e., for 0 < a < 1) due to the divergence of the canonical partition function.

arXiv:1206.6133v1l [cond-mat.stat-mech] 26 Jun 2012
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Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons
in pp Collisions at \/s =7 TeV

V. Khachatryan ef al.™
(CMS Collaboration)
(Received 18 May 2010; published 6 July 2010)
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Charged-particle multiplicities in ppinteractions
measured with the ATLAS detector at the LHC
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Abstract. Measurements are presented from proton—proton collisions at
centre-of-mass energies of /s = 0.9, 2.36 and 7 TeV recorded with the ATLAS
detector at the LHC. Events were collected using a single-arm minimum-
bias trigger. The charged-particle multiplicity, its dependence on transverse
momentum and pseudorapidity and the relationship between the mean transverse
momentum and charged-particle multiplicity are measured. Measurements in
different regions of phase space are shown, providing diffraction-reduced
measurements as well as more inclusive ones. The observed distributions
are corrected to well-defined phase-space regions, using model-independent
corrections. The results are compared to each other and to various Monte Carlo
(MC) models, including a new AMBTI1 pyTHIAG tune. In all the kinematic
regions considered, the particle multiplicities are higher than predicted by the
MC models. The central charged-particle multiplicity per event and unit of
pseudorapidity, for tracks with py > 100 MeV, is measured to be 3.483 £ 0.009
(stat) £0.106 (syst) at /s = 0.9 TeV and 5.630 £ 0.003 (stat) &= 0.169 (syst) at
s =TTeV.
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Nonlinear Relativistic and Quantum Equations with a Common Type of Solution
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Generalizations of the three main equations of quantum physics, namely, the Schrodinger, Klein-
Gordon, and Dirac equations, are proposed. Nonlinear terms, characterized by exponents depending on an
index ¢, are considered in such a way that the standard linear equations are recovered in the limit ¢ — 1.
Interestingly, these equations present a common, solitonlike, traveling solution, which is written in terms
of the g-exponential function that naturally emerges within nonextensive statistical mechanics. In all
cases, the well-known Einstein energy-momentum relation is preserved for arbitrary values of ¢.




g — generalized Schroedinger equation

(quantum non-relativistic spinless free particle)
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Its exact solution is given by
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E=£ (Newtonian relation!)
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p=hk

F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett 106/ 140601 (2011)



g-generalized Klein-Gordon equation:

(quantum relativistic spinless free particle: e.g., mesons )

) - B -\ 12(¢-D
1 0 (I)(x,t) 2.2 . CI)(x,t)

¢t ot
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Its exact solution is given by
- (p . x—Et)/n (-
(I)(x,t):(l)o el(p X )/ :(I)O el(k.x a)t)
q q
with
E’=p’c®+m’c* (Vq) (Einstein relation!)

Particular case: m=0 = ¢g-plane waves
F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett 106, 140601 (2011)



g-generalized Dirac equation:
(quantum relativistic spin 1/2 matter and anti-matter free particles:

e.g., electron and positron)

ih ’ (I)a(tx,t) + ihc(&ﬁ)d)(;c,t) = ﬁmczA(Q) (;c,t) (I)(;c,t) (g€ R)
with
o= ( ) B = G) Olj (4 X 4 matrices)
—g-1
A (x t) =5, k3 c(l t ( A0 (}z) - 50.) (4% 4 matrix)

where {a]} are complex constants.
F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett 106, 140601 (2011)



Its exact solution is given by

(= (7))
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hence

E*=p°c+m’c® (geR) (Einstein relation!)

F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett 106, 140601 (2011)
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